2,216
Views
2
CrossRef citations to date
0
Altmetric
Laboratory Study

Combination therapy with DHA and BMSCs suppressed podocyte injury and attenuated renal fibrosis by modulating the TGF-β1/Smad pathway in MN mice

, , , , , , , , & show all
Article: 2120821 | Received 05 Aug 2021, Accepted 24 May 2022, Published online: 17 Jan 2023

References

  • Fervenza FC, Sethi S, Specks U. Idiopathic membranous nephropathy: diagnosis and treatment. Clin J Am Soc Nephrol. 2008;3(3):905–919.
  • Li TT, Zhang XH, Jing JF, et al. Artemisinin analogue SM934 ameliorates the proteinuria and renal fibrosis in rat experimental membranous nephropathy. Acta Pharmacol Sin. 2015;36(2):188–199.
  • Zhang XD, Cui Z, Zhang MF, et al. Clinical implications of pathological features of primary membranous nephropathy. BMC Nephrol. 2018;19(1):215.
  • Bonse J, Wennmann DO, Kremerskothen J, et al. Nuclear Yap localization as a key regulator of podocyte function. Cell Death Dis. 2018;9(9):850.
  • Ma Y, Yang Q, Zhong Z, et al. Role of c-Abl and nephrin in podocyte cytoskeletal remodeling induced by angiotensin II. Cell Death Dis. 2018;9(2):185.
  • Greka A, Mundel P. Cell biology and pathology of podocytes. Annu Rev Physiol. 2012;74:299–323.
  • Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 2006;69(2):213–217.
  • Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684–696.
  • Humphreys BD, Bonventre JV. Mesenchymal stem cells in acute kidney injury. Annu Rev Med. 2008;59:311–325.
  • Wise AF, Ricardo SD. Mesenchymal stem cells in kidney inflammation and repair. Nephrology (Carlton). 2012;17(1):1–10.
  • Bi B, Schmitt R, Israilova M, et al. Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol. 2007;18(9):2486–2496.
  • Maxson S, Lopez EA, Yoo D, et al. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med. 2012;1(2):142–149.
  • Martino E, Tarantino M, Bergamini M, et al. Artemisinin and its derivatives; ancient tradition inspiring the latest therapeutic approaches against malaria. Future Med Chem. 2019;11(12):1443–1459.
  • Zeng AH, Ou YY, Guo MM, et al. Human embryonic lung fibroblasts treated with artesunate exhibit reduced rates of proliferation and human cytomegalovirus infection in vitro. J Thorac Dis. 2015;7(7):1151–1157.
  • Dolivo D, Weathers P, Dominko T. Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics. Acta Pharm Sin B. 2021;11(2):322–339.
  • Zheng YJ, Li X, Sun L, et al. [Therapeutic effect of dihydroartemisinin on pulmonary fibrosis in rats with dust]. Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese Journal of Industrial Hygiene and Occupational Diseases. 2019;37:96–103.
  • Yang DX, Qiu J, Zhou HH, et al. Dihydroartemisinin alleviates oxidative stress in bleomycin-induced pulmonary fibrosis. Life Sci. 2018;205:176–183.
  • Lunzhi L, Mingxia Z, Shan L. Effects of artemisinin on excretion of Nephrin and Podocin mRNA in urine podocytes of Heymann nephritis rats. Proprietary Chinese Med. 2017;39:2176–2178.
  • Border WA, Ward HJ, Kamil ES, et al. Induction of membranous nephropathy in rabbits by administration of an exogenous cationic antigen. J Clin Invest. 1982;69(2):451–461.
  • Wu J, Liu B, Liang C, et al. Zhen-wu-tang attenuates cationic bovine serum albumin-induced inflammatory response in membranous glomerulonephritis rat through inhibiting AGEs/RAGE/NF-κB pathway activation. Int Immunopharmacol. 2016;33:33–41.
  • Li S, Zhang Y, Zhao J. Preparation and suppressive effect of astragalus polysaccharide in glomerulonephritis rats. Int Immunopharmacol. 2007;7(1):23–28.
  • Makker SP, Tramontano A. Differential capacity of anti-RAP and anti-megalin antibodies to produce progressive passive Heymann nephritis – implications for the pathogenesis of idiopathic human membranous glomerulonephritis. J Pathol. 2006;210(3):282–287.
  • Jefferson JA, Pippin JW, Shankland SJ. Experimental models of membranous nephropathy. Drug Discov Today Dis Models. 2010;7(1–2):27–33.
  • Haraldsson B, Jeansson M. Glomerular filtration barrier. Curr Opin Nephrol Hypertens. 2009;18(4):331–335.
  • Yadav P, Kundu P, Pandey VK, et al. Effects of prolonged treatment of TGF-βR inhibitor SB431542 on radiation-induced signaling in breast cancer cells. Int J Radiat Biol. 2022;1–15.
  • Kerjaschki D, Farquhar MG. Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats. J Exp Med. 1983;157(2):667–686.
  • Shankland SJ, Pippin J, Pichler RH, et al. Differential expression of transforming growth factor-beta isoforms and receptors in experimental membranous nephropathy. Kidney Int. 1996;50(1):116–124.
  • Debiec H, Guigonis V, Mougenot B, et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N Engl J Med. 2002;346(26):2053–2060.
  • Beck LH Jr., Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361(1):11–21.
  • Romoli S, Angelotti ML, Antonelli G, et al. CXCL12 blockade preferentially regenerates lost podocytes in cortical nephrons by targeting an intrinsic podocyte-progenitor feedback mechanism. Kidney Int. 2018;94(6):1111–1126.
  • Campbell KN, Wong JS, Gupta R, et al. Yes-associated protein (Yap) promotes cell survival by inhibiting proapoptotic dendrin signaling. J Biol Chem. 2013;288(24):17057–17062.
  • Rezende GM, Viana VS, Malheiros DM, et al. Podocyte injury in pure membranous and proliferative lupus nephritis: distinct underlying mechanisms of proteinuria? Lupus 2014;23(3):255–262.
  • Tang S, Leung JC, Abe K, et al. Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. J Clin Invest. 2003;111(4):515–527.
  • Bonegio RG, Fuhro R, Wang Z, et al. Rapamycin ameliorates proteinuria-associated tubulointerstitial inflammation and fibrosis in experimental membranous nephropathy. J Am Soc Nephrol. 2005;16(7):2063–2072.
  • Böttinger EP. TGF-beta in renal injury and disease. Semin Nephrol. 2007;27(3):309–320.
  • Yoshioka K, Takemura T, Murakami K, et al. Transforming growth factor-beta protein and mRNA in glomeruli in normal and diseased human kidneys. Lab Invest. 1993;68(2):154–163.
  • Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest. 2017;127(10):3770–3783.
  • Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325–338.
  • Wang Y, Wang Y, Cao Q, et al. By homing to the kidney, activated macrophages potently exacerbate renal injury. Am J Pathol. 2008;172(6):1491–1499.
  • Luo J, Zhang W, Su C, et al. Seropositive PLA2R-associated membranous nephropathy but biopsy-negative PLA2R staining. Nephrology, dialysis, transplantation: official publication of the European dialysis and transplant association. Nephrol Dial Transplant. 2021;36(12):2216–2223.
  • Raphael KL, Gilligan S, Hostetter TH, et al. Association between urine ammonium and urine TGF-β1 in CKD. Clin J Am Soc Nephrol. 2018;13(2):223–230.