910
Views
0
CrossRef citations to date
0
Altmetric
Clinical Study

Rosiglitazone attenuates hypoxia-induced renal cell apoptosis by inhibiting NF-κB signaling pathway in a PPARγ-dependent manner

, , , , , , & show all
Pages 2068-2077 | Received 31 Aug 2022, Accepted 10 Nov 2022, Published online: 24 Nov 2022

References

  • Liu ZZ, Bullen A, Li Y, et al. Renal oxygenation in the pathophysiology of chronic kidney disease. Front Physiol. 2017;8:385.
  • Ow CPC, Ngo JP, Ullah MM, et al. Renal hypoxia in kidney disease: cause or consequence? Acta Physiol. 2018;222(4):e12999.
  • Shu S, Wang Y, Zheng M, et al. Hypoxia and Hypoxia-inducible factors in kidney injury and repair. Cells. 2019;8(3):207.
  • Tanaka S, Tanaka T, Nangaku M. Hypoxia as a key player in the aki-to-Ckd transition. Am J Physiol Renal Physiol. 2014;307(11):F1187–95.
  • Liu LLD, He YL, Zhou YZ, et al. Mir-210 protects renal cell against Hypoxia-induced apoptosis by targeting hif-1 alpha. Mol Med. 2017;23:258–271.
  • Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the bcl-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63.
  • Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018;31(1):15–25.
  • Zuk A, Bonventre JV. Acute kidney injury. Annu Rev Med. 2016;67:293–307.
  • Holditch SJ, Brown CN, Lombardi AM, et al. Recent advances in models, mechanisms, biomarkers, and interventions in Cisplatin-induced acute kidney injury. Int J Mol Sci. 2019;20(12):3011.
  • Wang Y, An H, Liu T, et al. Metformin improves mitochondrial respiratory activity through activation of ampk. Cell Rep. 2019;29(6):1511–1523.e5.
  • Linkermann A, Chen G, Dong G, et al. Regulated cell death in Aki. J Am Soc Nephrol. 2014;25(12):2689–2701.
  • Zhu Y, Cui H, Xia Y, et al. Ripk3-Mediated necroptosis and apoptosis contributes to renal tubular cell progressive loss and chronic kidney disease progression in rats. PLoS One. 2016;11(6):e0156729.
  • Habib SL. Diabetes and renal tubular cell apoptosis. World J Diabetes. 2013;4(2):27–30.
  • Bigagli E, Toti S, Lodovici M, et al. Dietary extra-virgin olive oil polyphenols do not attenuate Colon inflammation in transgenic hlab-27 rats but exert hypocholesterolemic effects through the modulation of hmgcr and Ppar-Α gene expression in the liver. Lifestyle Genom. 2018;11(2):99–108.
  • Guan Y, Breyer MD. Peroxisome proliferator-activated receptors (Ppars): Novel therapeutic targets in renal disease. Kidney Int. 2001;60(1):14–30.
  • Kiss-Tóth E, Roszer T. Ppargamma in kidney physiology and pathophysiology. PPAR Res. 2008;2008:183108.
  • Ruan X, Zheng F, Guan Y. Ppars and the kidney in metabolic syndrome. Am J Physiol Renal Physiol. 2008;294(5):F1032–47..
  • Pistrosch F, Herbrig K, Kindel B, et al. Rosiglitazone improves glomerular hyperfiltration, renal endothelial dysfunction, and microalbuminuria of incipient diabetic nephropathy in patients. Diabetes. 2005;54(7):2206–2211.
  • Ma Y, Shi M, Wang Y, et al. Pparγ and its agonists in chronic kidney disease. Int J Nephrol. 2020;2020:2917474.
  • Xi-Zhiyang P-J, Tu-Li, Jian-Shujuan, Qin-Yuanhan.  Effect of rosiglitazone pretreatment on Anoxia-induced necrotic apoptosis of renal tubular epithelial cells and its mechanism. Shandong Med J. 2020;60(23):42–44. (in Chinese).
  • Wen LL, Lin CY, Chou HC, et al. Perfluorooctanesulfonate mediates renal tubular cell apoptosis through Ppargamma inactivation. PLoS One. 2016;11(5):e0155190.
  • Singh AP, Singh N, Pathak D, et al. Estradiol attenuates ischemia reperfusion-induced acute kidney injury through Ppar-Γ stimulated enos activation in rats. Mol Cell Biochem. 2019;453(1–2):1–9.
  • Li N, Li Q, Bai J, et al. The multiple organs insult and compensation mechanism in mice exposed to hypobaric hypoxia. Cell Stress Chaperones. 2020;25(5):779–791.
  • Di Paola R, Mazzon E, Maiere D, et al. Rosiglitazone reduces the evolution of experimental periodontitis in the rat. J Dent Res. 2006;85(2):156–161.
  • Corrales P, Izquierdo-Lahuerta A, Medina-Gómez G. Maintenance of kidney metabolic homeostasis by Ppar Gamma. Int J Mol Sci. 2018;19(7):2063.
  • Deng J, Yu J. [Rosiglitazone protects acute kidney injury in septic rats]. Zhonghua Yi Xue Za Zhi. 2016;96(29):2311–2315.
  • Liu SY, Huang CC, Huang SF, et al. Pioglitazone ameliorates acute Endotoxemia-induced acute on chronic renal dysfunction in cirrhotic ascitic rats. Cells. 2021;10(11):3044.
  • Li Y, Tian YG, Li JS, et al. Bufei yishen granules combined with acupoint sticking therapy suppress oxidative stress in chronic obstructive pulmonary disease rats: via regulating peroxisome proliferator-activated receptor-Gamma signaling. J Ethnopharmacol. 2016;193:354–361.
  • Wei L, Qin Y, Jiang L, et al. Pparγ and mitophagy are involved in hypoxia/Reoxygenation-induced renal tubular epithelial cells injury. J Recept Signal Transduct Res. 2019;39(3):235–242.
  • Reuter S, Gupta SC, Chaturvedi MM, et al. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–1616.
  • Blanquicett C, Kang BY, Ritzenthaler JD, et al. Oxidative stress modulates ppar gamma in vascular endothelial cells. Free Radic Biol Med. 2010;48(12):1618–1625.
  • Giampietro L, Gallorini M, De Filippis B, et al. Ppar-Γ agonist Gl516 reduces oxidative stress and apoptosis occurrence in a rat astrocyte cell line. Neurochem Int. 2019;126:239–245.
  • Peng S, Xu J, Ruan W, et al. Ppar-Γ activation prevents septic cardiac dysfunction via inhibition of apoptosis and necroptosis. Oxid Med Cell Longev. 2017;2017:8326749.
  • Wu H, Zhu H, Zhuang Y, et al. Lncrna acart protects cardiomyocytes from apoptosis by activating Ppar-Γ/Bcl-2 pathway. J Cell Mol Med. 2020;24(1):737–746.
  • Kalkan Y, Kapakin KA, Kara A, et al. Protective effect of panax ginseng against serum biochemical changes and apoptosis in kidney of rats treated with gentamicin sulphate. J Mol Histol. 2012;43(5):603–613.
  • Sepand MR, Ghahremani MH, Razavi-Azarkhiavi K, et al. Ellagic acid confers protection against Gentamicin-Induced oxidative damage, mitochondrial dysfunction and Apoptosis-related nephrotoxicity. J Pharm Pharmacol. 2016;68(9):1222–1232.
  • Chen X, Wei W, Li Y, et al. Hesperetin relieves Cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis. Chem Biol Interact. 2019;308:269–278.
  • Li RY, Zhang WZ, Yan XT, et al. Arginyl-Fructosyl-Glucose, a major maillard reaction product of red ginseng, attenuates Cisplatin-Induced acute kidney injury by regulating nuclear factor Κb and phosphatidylinositol 3-Kinase/protein kinase B signaling pathways. J Agric Food Chem. 2019;67(20):5754–5763.
  • Zhang P, Yang Y, Lv R, et al. Effect of the intensity of continuous renal replacement therapy in patients with sepsis and acute kidney injury: a single-center randomized clinical trial. Nephrol Dial Transplant. 2012;27(3):967–973.
  • Naveed M, Han L, Hasnat M, et al. Suppression of tgp on myocardial remodeling by regulating the Nf-Κb pathway. Biomed Pharmacother. 2018;108:1460–1468.
  • Suzuki S, Mori Y, Nagano A, et al. Pioglitazone, a peroxisome proliferator-activated receptor Γ agonist, suppresses rat prostate carcinogenesis. Int J Mol Sci. 2016;17(12):2071.
  • Li D, Hu J, Wang T, et al. Silymarin attenuates cigarette smoke extract-induced inflammation via simultaneous inhibition of autophagy and erk/P38 Mapk pathway in human bronchial epithelial cells. Sci Rep. 2016;6:37751.
  • Ju Z, Su M, Hong J, et al. Anti-Inflammatory effects of an optimized Ppar-Γ agonist via Nf-Κb pathway inhibition. Bioorg Chem. 2020;96:103611.
  • Zhang G, Wang H, Zhang Q, et al. Bergenin alleviates H2O2 -Induced oxidative stress and apoptosis in nucleus pulposus cells: involvement of the Ppar-Γ/Nf-Κb pathway. Environ Toxicol. 2021;36(12):2541–2550.
  • Lin KI, Lee SH, Narayanan R, et al. Thiol agents and bcl-2 identify an Alphavirus-induced apoptotic pathway that requires activation of the transcription factor Nf-Kappa B. J Cell Biol. 1995;131(5):1149–1161.
  • Moulin M, Anderton H, Voss AK, et al. Iaps limit activation of rip kinases by Tnf receptor 1 during development. Embo J. 2012;31(7):1679–1691.