1,769
Views
0
CrossRef citations to date
0
Altmetric
Clinical Study

Is serum hemoglobin level an independent prognostic factor for IgA nephropathy?: a systematic review and meta-analysis of observational cohort studies

, , , , , , , , & show all
Article: 2171885 | Received 28 Sep 2022, Accepted 13 Jan 2023, Published online: 30 Jan 2023

References

  • Schena FP. A retrospective analysis of the natural history of primary IgA nephropathy worldwide. Am J Med. 1990;89(2):209–215.
  • Li LS, Liu ZH. Epidemiologic data of renal diseases from a single unit in China: analysis based on 13,519 renal biopsies. Kidney Int. 2004;66(3):920–923.
  • Alamartine E, Sabatier JC, Guerin C, et al. Prognostic factors in mesangial IgA glomerulonephritis: an extensive study with univariate and multivariate analyses. Am J Kidney Dis. 1991;18(1):12–19.
  • Koyama A, Igarashi M, Kobayashi M. Natural history and risk factors for immunoglobulin a nephropathy in Japan. Research group on progressive renal diseases. Am J Kidney Dis. 1997;29(4):526–532.
  • Le W, Liang S, Hu Y, et al. Long-term renal survival and related risk factors in patients with IgA nephropathy: results from a cohort of 1155 cases in a Chinese adult population. Nephrol Dial Transplant. 2012;27(4):1479–1485.
  • Zhang K, Tang L, Jiang SS, et al. Is hyperuricemia an independent prognostic factor for IgA nephropathy: a systematic review and meta-analysis of observational cohort studies. Ren Fail. 2022;44(1):70–80.
  • Barbour SJ, Espino-Hernandez G, Reich HN, et al. The MEST score provides earlier risk prediction in lgA nephropathy. Kidney Int. 2016;89(1):167–175.
  • Park S, Baek CH, Park SK, et al. Clinical Significance of crescent formation in IgA nephropathy - a multicenter validation study. Kidney Blood Press Res. 2019;44(1):22–32.
  • Wang S, Dong L, Pei G, et al. High neutrophil-to-lymphocyte ratio is an independent risk factor for end stage renal diseases in IgA nephropathy. Front Immunol. 2021;12:700224.
  • Jiang Z, Tan J, Wang S, et al. Lower serum bilirubin is associated with poor renal outcome in IgA nephropathy patients. Int J Med Sci. 2021;18(13):2964–2970.
  • Yi SW, Moon SJ, Yi JJ. Low-normal hemoglobin levels and anaemia are associated with increased risk of end-stage renal disease in general populations: a prospective cohort study. PLoS One. 2019;14(4):e0215920.
  • Roberts IS. Pathology of IgA nephropathy. Nat Rev Nephrol. 2014;10(8):445–454.
  • Wang Y, Wei RB, Su TY, et al. Clinical and pathological factors of renal anaemia in patients with IgA nephropathy in Chinese adults: a cross-sectional study. BMJ Open. 2019;9(1):e023479.
  • Xie J, Lv J, Wang W, et al. Kidney Failure risk prediction equations in IgA nephropathy: a multicenter risk assessment study in Chinese patients. Am J Kidney Dis. 2018;72(3):371–380.
  • Oh TR, Song SH, Choi HS, et al. The Association between serum hemoglobin and renal prognosis of IgA nephropathy. J Clin Med. 2021;10(2):363.
  • Zhai Y, Yao X, Qi Y, et al. Elevated serum chloride levels contribute to a poor prognosis in patients with IgA nephropathy. J Immunol Res. 2021;2021:3598135.
  • Caliskan Y, Ozluk Y, Celik D, et al. The clinical significance of uric acid and complement activation in the progression of IgA nephropathy. Kidney Blood Press Res. 2016;41(2):148–157.
  • Yang Y, Tang X, Yang Y, et al. Glomerular C4 deposition and glomerulosclerosis predict worse renal outcomes in Chinese patients with IgA nephropathy. Ren Fail. 2020;42(1):629–637.
  • Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–605.
  • Higgins JPT, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions version 6.1. [updated 2020 Sep]. Cochrane; 2020. Available from www.training.cochrane.org/handbook.
  • Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–2012.
  • Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560.
  • Lu P, Li X, Zhu N, et al. Serum uric acid level is correlated with the clinical, pathological progression and prognosis of IgA nephropathy: an observational retrospective pilot-study. PeerJ. 2020;8:e10130. Nov 3
  • Zhu B, Liu WH, Yu DR, et al. The Association of low hemoglobin levels with IgA nephropathy progression: a two-center cohort study of 1,828 cases. Am J Nephrol. 2020;51(8):624–634.
  • Tanaka S, Ninomiya T, Masutani K, et al. Prognostic impact of serum bilirubin level on long-term renal survival in IgA nephropathy. Clin Exp Nephrol. 2015;19(6):1062–1070.
  • Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982;307(11):652–659.
  • Nath KA. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis. 1992;20(1):1–17.
  • Eddy AA. Experimental insights into the tubulointerstitial disease accompanying primary glomerular lesions. J Am Soc Nephrol. 1994;5(6):1273–1287.
  • Nangaku M. Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern Med. 2004;43(1):9–17.
  • Hodgkins KS, Schnaper HW. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr Nephrol. 2012;27(6):901–909.
  • Fine LG, Bandyopadhay D, Norman JT. Is there a common mechanism for the progression of different types of renal diseases other than proteinuria? Towards the unifying theme of chronic hypoxia. Kidney Int Suppl. 2000;75: s22–6.
  • Edwards A, Kurtcuoglu V. Renal blood flow and oxygenation. Pflugers Arch. 2022;474(8):759–770.
  • Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol. 2006;17(1):17–25.
  • Palm F, Nordquist L. Renal tubulointerstitial hypoxia: cause and consequence of kidney dysfunction. Clin Exp Pharmacol Physiol. 2011;38(7):474–480.
  • Rabelink TJ, Wijewickrama DC, de Koning EJ. Peritubular endothelium: the achilles heel of the kidney? Kidney Int. 2007;72(8):926–930.
  • Tanaka T, Hanafusa N, Ingelfinger JR, et al. Hypoxia induces apoptosis in SV40-immortalized rat proximal tubular cells through the mitochondrial pathways, devoid of HIF1-mediated upregulation of bax. Biochem Biophys Res Commun. 2003;309(1):222–231.
  • Takeuchi M, Kobata A. Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology. 1991;1(4):337–346.
  • Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447–5454.
  • Pfeffer MA, Burdmann EA, Chen CY, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009;361(21):2019–2032. Nov 19
  • Zheng L, Tian J, Liu D, et al. Efficacy and safety of roxadustat for anaemia in dialysis-dependent and non-dialysis-dependent chronic kidney disease patients: a systematic review and meta-analysis. Br J Clin Pharmacol. 2022;88(3):919–932.
  • Fishbane S, Pollock CA, El-Shahawy M, et al. Roxadustat versus epoetin alfa for treating anaemia in patients with chronic kidney disease on dialysis: results from the randomized phase 3 ROCKIES study. J Am Soc Nephrol. 2022;33(4):850–866.
  • Kabei K, Tateishi Y, Nozaki M, et al. Role of hypoxia-inducible factor-1 in the development of renal fibrosis in mouse obstructed kidney: special references to HIF-1 dependent gene expression of profibrogenic molecules. J Pharmacol Sci. 2018;136(1):31–38.
  • Kabei K, Tateishi Y, Shiota M, et al. Effects of orally active hypoxia inducible factor alpha prolyl hydroxylase inhibitor, FG4592 on renal fibrogenic potential in mouse unilateral ureteral obstruction model. J Pharmacol Sci. 2020;142(3):93–100.
  • Miao AF, Liang JX, Yao L, et al. Hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) protects against renal ischemia/reperfusion injury by inhibiting inflammation. Ren Fail. 2021;43(1):803–810.