1,858
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Macrophage polarization induces endothelium-to-myofibroblast transition in chronic allograft dysfunction

, , , , , & show all
Article: 2220418 | Received 21 Dec 2022, Accepted 27 May 2023, Published online: 08 Jun 2023

References

  • Wang Z, Han Z, Tao J, et al. Role of endothelial-to-mesenchymal transition induced by TGF-beta1 in transplant kidney interstitial fibrosis. J Cell Mol Med. 2017;21(10):1–11.
  • Helmke A, Casper J, Nordlohne J, et al. Endothelial-to-mesenchymal transition shapes the atherosclerotic plaque and modulates macrophage function. Faseb J. 2019;33(2):2278–2289.
  • Wang Z, Han Z, Tao J, et al. Transforming growth factor-beta1 induces endothelial-to-Mesenchymal transition via akt signaling pathway in renal transplant recipients with chronic allograft dysfunction. Ann Transplant. 2016;21:775–783.
  • Gui Z, Suo C, Wang Z, et al. Impaired ATG16L-dependent autophagy promotes renal interstitial fibrosis in chronic renal graft dysfunction through inducing EndMT by NF-kappaB signal pathway. Front Immunol. 2021;12:650424.
  • Hang Z, Wei J, Zheng M, et al. Iguratimod attenuates macrophage polarization and Antibody-Mediated rejection after renal transplant by regulating KLF4. Front Pharmacol. 2022;13:865363.
  • Han Q, Zhang X, Ren X, et al. Biological characteristics and predictive model of biopsy-proven acute rejection (BPAR) after kidney transplantation: evidences of multi-omics analysis. Front Genet. 2022;13:844709.
  • Xie Y, Hu X, Li S, et al. Pharmacological targeting macrophage phenotype via gut-kidney axis ameliorates renal fibrosis in mice. Pharmacol Res. 2022;178:106161.
  • Funes SC, Rios M, Escobar-Vera J, et al. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154(2):186–195.
  • Mannon RB. Macrophages: contributors to allograft dysfunction, repair, or innocent bystanders? Curr Opin Organ Transplant. 2012;17(1):20–25.
  • Nadeau KC, Azuma H, Tilney NL. Sequential cytokine dynamics in chronic rejection of rat renal allografts: roles for cytokines RANTES and MCP-1. Proc Natl Acad Sci U S A. 1995;92(19):8729–8733.
  • Ibrahim HN, Murad DN, Knoll GA. Thinking outside the box: novel kidney protective strategies in kidney transplantation. CJASN. 2021;16(12):1890–1897.
  • Banasik M, Klinger M. Chronic allograft nephropathy–immunologic and nonimmunologic factors. Annals of Transplantation. 2006;11(1):7–10.
  • Bank JR, Rabelink TJ, de Fijter JW, et al. Safety and efficacy endpoints for mesenchymal stromal cell therapy in renal transplant recipients. J Immunol Res. 2015;2015:391797.
  • Reinders ME, de Fijter JW, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl Med. 2013;2(2):107–111.
  • Leuning DG, Reinders ME, de Fijter JW, et al. Clinical translation of multipotent mesenchymal stromal cells in transplantation. Semin Nephrol. 2014;34(4):351–364.
  • Pascual J, Perez-Saez MJ, Mir M, et al. Chronic renal allograft injury: early detection, accurate diagnosis and management. Transplant Rev. 2012;26(4):280–290.
  • Li C, Yang CW. The pathogenesis and treatment of chronic allograft nephropathy. Nat Rev Nephrol. 2009;5(9):513–519.
  • Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133(20):2178–2185.
  • Thanabalasuriar A, Surewaard BG, Willson ME, et al. Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature. J Clin Invest. 2017;127(6):2249–2261.
  • Garai P, Berry L, Moussouni M, et al. Killing from the inside: intracellular role of T3SS in the fate of Pseudomonas aeruginosa within macrophages revealed by mgtC and oprF mutants. PLoS Pathog. 2019;15(6):e1007812.
  • Azad TD, Donato M, Heylen L, et al. Inflammatory macrophage-associated 3-gene signature predicts subclinical allograft injury and graft survival. JCI Insight. 2018;3(2):e95659.
  • Feng Y, Ren J, Gui Y, et al. Wnt/beta-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. J Am Soc Nephrol. 2018;29(1):182–193.
  • Liu B, Jiang J, Liang H, et al. Natural killer T cell/IL-4 signaling promotes bone marrow-derived fibroblast activation and M2 macrophage-to-myofibroblast transition in renal fibrosis. Int Immunopharmacol. 2021;98:107907.
  • Holm A, Karlsson T, Vikström E. Pseudomonas aeruginosa lasI/rhlI quorum sensing genes promote phagocytosis and aquaporin 9 redistribution to the leading and trailing regions in macrophages. Front Microbiol. 2015;6:915.
  • Ma X, Wang Q. Short-chain fatty acids attenuate renal fibrosis and enhance autophagy of renal tubular cells in diabetic mice through the HDAC2/ULK1 axis. Endocrinol Metab. 2022;37(3):432–443.
  • Jin L, Yu B, Liu G, et al. Mitophagy induced by UMI-77 preserves mitochondrial fitness in renal tubular epithelial cells and alleviates renal fibrosis. FASEB J. 2022;36(6):e22342.
  • Piacenza L, Trujillo M, Radi R. Reactive species and pathogen antioxidant networks during phagocytosis. J Exp Med. 2019;216(3):501–516.
  • Chen JS, Wang MX, Wang MM, et al. Synthesis and biological evaluation of geniposide derivatives as inhibitors of hyperuricemia, inflammatory and fibrosis. Eur J Med Chem. 2022;237:114379.
  • Sato Y, Oguchi A, Fukushima Y, et al. CD153/CD30 signaling promotes age-dependent tertiary lymphoid tissue expansion and kidney injury. J Clin Invest. 2022;132(2):e146071.