0
Views
0
CrossRef citations to date
0
Altmetric
Chronic Kidney Disease and Progression

Construction and validation of a risk model of proteinuria in patients with omicron COVID‐19: retrospective cohort study

, , , , , ORCID Icon & show all
Article: 2365979 | Received 10 Dec 2023, Accepted 04 Jun 2024, Published online: 06 Aug 2024

References

  • Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med. 2021;27(1):28–33. doi: 10.1038/s41591-020-01202-8.
  • Motavalli R, Abdelbasset WK, Rahman HS, et al. The lethal internal face of the coronaviruses: kidney tropism of the SARS, MERS, and COVID19 viruses. IUBMB Life. 2021;73(8):1005–1015. doi: 10.1002/iub.2516.
  • Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383(6):590–592. doi: 10.1056/NEJMc2011400.
  • Joseph A, Zafrani L, Mabrouki A, et al. Acute kidney injury in patients with SARS-CoV-2 infection. Ann Intensive Care. 2020;10(1):117. doi: 10.1186/s13613-020-00734-z.
  • Martinez-Rojas MA, Vega-Vega O, Bobadilla NA. Is the kidney a target of SARS-CoV-2? Am J Physiol Renal Physiol. 2020;318(6):F1454–F1462. doi: 10.1152/ajprenal.00160.2020.
  • Iuliano AD, Brunkard JM, Boehmer TK, et al. Trends in disease severity and health care utilization during the early Omicron variant period compared with previous SARS-CoV-2 high transmission periods—United States, December 2020–January 2022. MMWR Morb Mortal Wkly Rep. 2022;71(4):146–152. doi: 10.15585/mmwr.mm7104e4.
  • Teng LB, Chang WX. The investigation of kidney involvement in 430 hospitalized patients with omicron COVID-19 in Tianjin, China. Blood Purif. 2023;52(5):437–445. doi: 10.1159/000528734.
  • Zhang LX, Long JY, Jiang WS, et al. Trends in chronic kidney disease in China. N Engl J Med. 2016;375(9):905–906. doi: 10.1056/NEJMc1602469.
  • Cheng YC, Luo R, Wang K, et al. kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829–838. doi: 10.1016/j.kint.2020.03.005.
  • Perico L, Benigni A, Casiraghi F, et al. Immunity, endothelial injury, and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol. 2021;17(1):46–64. doi: 10.1038/s41581-020-00357-4.
  • Pei GC, Zhang ZG, Peng J, et al. Renal involvement and early prognosis in patients with COVID-19 pneumonia. J Am Soc Nephrol. 2020;31(6):1157–1165. doi: 10.1681/ASN.2020030276.
  • World Health Organization. Laboratory testing strategy recommendations for COVID‐19: interim guidance; 2020. World Health Organization. https://apps.who.int/iris/handle/10665/331509.
  • National Health Commission of the People’s Republic of China. Chinese recommendations for diagnosis and treatment of novel coronavirus (SARSCoV2) infection (Trial 8th version). Chin J Clin Infect Dis. 2020;13(5):321–328.
  • Zheng XZ, Yang HY, Li XL, et al. Prevalence of kidney injury and associations with critical illness and death in patients with COVID-19. Clin J Am Soc Nephrol. 2020;15(11):1549–1556. doi: 10.2215/CJN.04780420.
  • Portolés J, Marques M, López-Sánchez P, et al. chronic kidney disease and acute kidney injury in the COVID-19 Spanish outbreak. Nephrol Dial Transplant. 2020;35(8):1353–1361. doi: 10.1093/ndt/gfaa189.
  • Nlandu Y, Mafuta D, Sakaji J, et al. Predictors of mortality in COVID-19 patients at Kinshasa Medical Center and a survival analysis: a retrospective cohort study. BMC Infect Dis. 2021;21(1):1272. doi: 10.1186/s12879-021-06984-x.
  • Kania M, Mazur K, Terlecki M, et al. Characteristics, mortality, and clinical outcomes of hospitalized patients with COVID-19 and diabetes: a reference single-center cohort study from Poland. Int J Endocrinol. 2023;2023:8700302–8700311. doi: 10.1155/2023/8700302.
  • Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547. doi: 10.1183/13993003.00547-2020.
  • Wang DW, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi: 10.1001/jama.2020.1585.
  • Guo T, Shen QX, Ouyang XL, et al. Clinical findings in diabetes mellitus patients with COVID-19. J Diabetes Res. 2021;2021:7830136–7830137. doi: 10.1155/2021/7830136.
  • Hill MA, Mantzoros C, Sowers JR. Commentary: COVID-19 in patients with diabetes. Metabolism. 2020;107:154217. doi: 10.1016/j.metabol.2020.154217.
  • Seminog OO, Goldacre MJ. Risk of pneumonia and pneumococcal disease in people hospitalized with diabetes mellitus: English record-linkage studies. Diabet Med. 2013;30(12):1412–1419. doi: 10.1111/dme.12260.
  • Yang XB, Yu Y, Xu JQ, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481. doi: 10.1016/S2213-2600(20)30079-5.
  • Xia TT, Zhang WJ, Xu Y, et al. Early kidney injury predicts disease progression in patients with COVID-19: a cohort study. BMC Infect Dis. 2021;21(1):1012. doi: 10.1186/s12879-021-06576-9.
  • Yin W, Zhou QL, Ouyang SX, et al. Uric acid regulates NLRP3/IL-1β signaling pathway and further induces vascular endothelial cells injury in early CKD through ROS activation and K + efflux. BMC Nephrol. 2019;20(1):319. doi: 10.1186/s12882-019-1506-8.
  • Cai W, Duan XM, Liu Y, et al. Uric acid induces endothelial dysfunction by activating the HMGB1/RAGE signaling pathway. Biomed Res Int. 2017;2017:4391920–4391911. doi: 10.1155/2017/4391920.
  • Jia SD, Wang YG, Li HF, et al. Oxidative stress and endothelial dysfunction at different serum uric acid levels. Zhonghua Nei Ke Za Zhi. 2008;47(8):638–641.
  • Pelle MC, Zaffina I, Lucà S, et al. Endothelial dysfunction in COVID-19: potential mechanisms and possible therapeutic options. Life (Basel). 2022;12(10):1605–1628. doi: 10.3390/life12101605.
  • Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J. 2020;41(32):3038–3044. doi: 10.1093/eurheartj/ehaa623.
  • Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26(7):1017–1032. doi: 10.1038/s41591-020-0968-3.
  • Melhorn J, Alamoudi A, A Mentzer J, et al. Persistence of inflammatory and vascular mediators 5 months after hospitalization with COVID-19 infection. Front Med (Lausanne). 2023;10:1056506. doi: 10.3389/fmed.2023.1056506.
  • Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat Rev Immunol. 2014;14(5):315–328. doi: 10.1038/nri3665.
  • Park C, Tavakoli-Tabasi S, Sharafkhaneh A, et al. Inflammatory biomarkers differ among hospitalized veterans infected with alpha, delta, and omicron SARS-CoV-2 variants. Int J Environ Res Public Health. 2023;20(4):2987. doi: 10.3390/ijerph20042987.
  • Rozanovic M, Domokos K, Márovics G, et al. Can we predict critical care mortality with non-conventional inflammatory markers in SARS-CoV-2 infected patients? Clin Hemorheol Microcirc. 2023;84(1):71–82. doi: 10.3233/CH-231697.
  • Trofin F, Nastase EV, Vâță A, et al. The immune, inflammatory and hematological response in COVID-19 patients, according to the severity of the disease. Microorganisms. 2023;11(2):319. doi: 10.3390/microorganisms11020319.
  • Danza P, Koo TH, Haddix M, et al. SARS-CoV-2 infection and hospitalization among adults aged ≥18 years, by vaccination status, before and during SARS-CoV-2 B.1.1.529 (Omicron) variant predominance—Los Angeles County, California, November 7, 2021–January 8, 2022. MMWR Morb Mortal Wkly Rep. 2022;71(5):177–181. doi: 10.15585/mmwr.mm7105e1.
  • Chen XH, Wang HY, Ai JW, et al. Identification of CKD, bedridden history and cancer as higher-risk comorbidities and their impact on prognosis of hospitalized Omicron patients: a multi-center cohort study. Emerg Microbes Infect. 2022;11(1):2501–2509. doi: 10.1080/22221751.2022.2122581.
  • Bernal JL, Andrews N, Gower C, et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ. 2021;13(373):n1088. doi: 10.1136/bmj.n1088.
  • Kaabi NA, Oulhaj A, Hosani AFI, et al. The incidence of COVID-19 infection following emergency use authorization of BBIBP-CORV inactivated vaccine in frontline workers in the United Arab Emirates. Sci Rep. 2022;12(1):490. doi: 10.1038/s41598-021-04244-1.
  • Hamdan NEA, Fahrni ML, Lazzarino AI. COVID-19 vaccination prioritization strategies in Malaysia: A retrospective analysis of early evidence. Vaccines (Basel). 2023;11(1):48–62. doi: 10.3390/vaccines11010048.
  • Fong CHY, Zhang XJ, Chen LL, et al. Effect of vaccine booster, vaccine type, and hybrid immunity on humoral and cellular immunity against SARS-CoV-2 ancestral strain and Omicron variant sublineages BA.2 and BA.5 among older adults with comorbidities: a cross sectional study. EBioMedicine. 2023;88:104446. doi: 10.1016/j.ebiom.2023.104446.
  • Modes ME, Directo MP, Melgar M, et al. Clinical characteristics and outcomes among adults hospitalized with laboratory-confirmed SARS-CoV-2 infection during periods of B.1.617.2 (Delta) and B.1.1.529 (Omicron) variant predominance—One Hospital, California, July 15–September 23, 2021, and December 21, 2021–January 27, 2022. MMWR Morb Mortal Wkly Rep. 2022;71(6):217–223. doi: 10.15585/mmwr.mm7106e2.
  • Stirrup O, Shrotri M, Adams NL, et al. Clinical effectiveness of SARS-CoV-2 booster vaccine against omicron infection in residents and staff of long-term care facilities: a prospective cohort study (VIVALDI). Open Forum Infect Dis. 2023;10(1):ofac694. doi: 10.1093/ofid/ofac694.