Publication Cover
CRANIO®
The Journal of Craniomandibular & Sleep Practice
Latest Articles
94
Views
0
CrossRef citations to date
0
Altmetric
Literature Review

Central effects of trigeminal electrical stimulation

, DDS, , DDS, , PhD, , DO MRO(I), , PhD & , DMD, PhD

References

  • Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000 Dec;61(3):201–216. doi: 10.1016/s0165-0327(00)00338-4. PMID: 11163422.
  • Smith R, Thayer JF, Khalsa SS, Lane RD. The hierarchical basis of neurovisceral integration. Neurosci Biobehav Rev. 2017 Apr;75:274–296. doi: 10.1016/j.neubiorev.2017.02.003. Epub 2017 Feb 8. PMID: 28188890.
  • Kemeny ME. Psychobiological responses to social threat: evolution of a psychological model in psychoneuroimmunology. Brain Behav Immun. 2009 Jan;23(1):1–9. doi: 10.1016/j.bbi.2008.08.008. Epub 2008 Sep 10. PMID: 18809488.
  • Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011 Mar;152(3):S2–S15. doi: 10.1016/j.pain.2010.09.030. Epub 2010 Oct 18. PMID: 20961685; PMCID: PMC3268359.
  • Boomershine CS. Fibromyalgia: the prototypical central sensitivity syndrome. CRR. 2015;11(2):131–145. doi: 10.2174/1573397111666150619095007. PMID: 26088213.
  • Van Bockstaele EJ, Valentino RJ. Neuropeptide regulation of the locus coeruleus and opiate-induced plasticity of stress responses. Adv Pharmacol. 2013;68:405–420. doi: 10.1016/B978-0-12-411512-5.00019-1. PMID: 24054155; PMCID: PMC4707951.
  • Valentino RJ, Foote SL, Page ME. The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann N Y Acad Sci. 1993 Oct 29;697(1):173–188. 10.1111/j.1749-6632.1993.tb49931.x. PMID: 7903030.
  • Hamner MB, Lorberbaum JP, George MS. Potential role of the anterior cingulate cortex in PTSD: review and hypothesis. Depress Anxiety. 1999;9(1):1–14. doi: 10.1002/(SICI)1520-6394(1999)9:1<1:AID-DA1>3.0.CO;2-4. PMID: 9989344.
  • Kalra A, Urban MO, Sluka KA. Blockade of opioid receptors in rostral ventral medulla prevents antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS). J Pharmacol Exp Ther. 2001 Jul;298(1):257–263. PMID: 11408550.
  • Sluka KA, Deacon M, Stibal A, Strissel S, Terpstra A. Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritic rats. J Pharmacol Exp Ther. 1999 May;289(2):840–846. PMID: 10215661.
  • DeSantana JM, Da Silva LF, De Resende MA, Sluka KA. Transcutaneous electrical nerve stimulation at both high and low frequencies activates ventrolateral periaqueductal grey to decrease mechanical hyperalgesia in arthritic rats. Neuroscience. 2009 Nov 10;163(4):1233–1241. doi: 10.1016/j.neuroscience.2009.06.056. Epub 2009 Jul 2. PMID: 19576962; PMCID: PMC3955259.
  • Gopalkrishnan P, Sluka KA. Effect of varying frequency, intensity and pulse duration of TENS on primary hyperalgesia in inflamed rats. Arch Phys Med Rehabil. 2000;81(7):984–990. doi: 10.1053/apmr.2000.5576
  • Ainsworth L, Budelier K, Clinesmith M, et al. Transcutaneous electrical nerve stimulation (TENS) reduces chronic hyperlagesia induced by muscle inflammation. Pain. 2006;120(1–2):182–187. doi: 10.1016/j.pain.2005.10.030
  • Hirakawa N, Tershner SA, Fields HL. Highly delta selective antagonists in the RVM attenuate the antinociceptive effect of PAG DAMGO. Neuroreport. 1999 Oct 19;10(15):3125–3129. 10.1097/00001756-199910190-00001. PMID: 10574547.
  • Hirose N, Murakawa K, Takada K, Oi Y, Suzuki T, Nagase H, Cools AR, Koshikawa N. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens. Neuroscience. 2005;135(1):213–225. doi: 10.1016/j.neuroscience.2005.03.065. PMID: 16111831.
  • Costa B, Ferreira I, Trevizol A, Thibaut A, Fregni F. Emerging targets and uses of neuromodulation for pain. Expert Rev Neurother. 2019 Feb;19(2):109–118. doi: 10.1080/14737175.2019.1567332. Epub 2019 Jan 25. PMID: 30681009.
  • Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul. 2020 May-Jun;13(3):717–750. doi: 10.1016/j.brs.2020.02.019. Epub 2020 Feb 23. PMID: 32289703; PMCID: PMC7196013.
  • Vance CG, Dailey DL, Rakel BA, et al. Using TENS for pain control: the state of the evidence. Pain Manag. 2014 May;4(3):197–209. doi: 10.2217/pmt.14.13. PMID: 24953072; PMCID: PMC4186747.
  • Lin T, Gargya A, Singh H, et al. Mechanism of peripheral nerve stimulation in chronic pain. Pain Med. 2020 Aug 1;21(Suppl 1):S6–S12. 10.1093/pm/pnaa164. PMID: 32804230; PMCID: PMC7828608.
  • Chapman CR, Tuckett RP, Song CW. Pain and stress in a systems perspective: reciprocal neural, endocrine, and immune interactions. J Pain. 2008 Feb;9(2):122–145. doi: 10.1016/j.jpain.2007.09.006. Epub 2007 Dec 21. PMID: 18088561; PMCID: PMC2278005
  • Nelson S, Burns M, McEwen B, et al. Stressful experiences in youth: “set-up” for diminished resilience to chronic pain. Brain Behav Immun Health. 2020 Jun 11;5:100095. 10.1016/j.bbih.2020.100095. PMID: 34589863; PMCID: PMC8474662
  • Fleckenstein J, Neuberger EWI, Bormuth P, Comes F, Schneider A, Banzer W, Fischer L, Simon P. Investigation of the sympathetic regulation in delayed onset muscle soreness: results of an RCT. Front Physiol. 2021 Sep 16;12:697335. 10.3389/fphys.2021.697335. PMID: 34603072; PMCID: PMC8481669
  • Moruzzi G, Magoun HW. Brainstem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949 Nov;1(4):455–473. doi: 10.1016/0013-4694(49)90219-9. PMID: 18421835.
  • Roger A, Rossi GF. Zirondoli Sull’importanza dei nervi encefalici nel mantenimento della veglia nel preparato «encefalo isolato». Boll Soc Ital Biol Sper. 1955 May;31(5):463–464.
  • Levi-Montalcini R, Piccolino M, Wade NJ. Giuseppe Moruzzi: a tribute to a “formidable” scientist and a “formidable” man. Brain Res Rev. 2011 Jan 7;66(1–2):256–269. 10.1016/j.brainresrev.2010.09.004. Epub 2010 Sep 15. PMID: 20837057.
  • Winfree CJ. Peripheral nerve stimulation for facial pain using conventional Devices: indications and results. Prog Neurol Surg. 2020;35:60–67. doi: 10.1159/000509574. Epub 2020 Jul 17. PMID: 32683375.
  • Yaghoubian JM, Aminpour S, Anilus V. Supertrochlear Nerve Block [Updated .2023 Jun 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan PMID: 32644465.
  • Napier A, De Jesus O, Taylor A. Supraorbital nerve block. StatPearls [Internet] PMID: 30725622 Treasure Island (FL): StatPearls Publishing; 2021Jan 2021 Aug 30
  • Jean-Pierre B, Croibier A. Manual Therapy for the Cranial Nerves. Churchill Livingstone. 2009;281-286. doi: 10.1016/B978-0-7020-3100-7.5003
  • Solomon S, Guglielmo KM. Treatment of headache by transcutaneous electrical stimulation. Headache. 1985 Jan;25(1):12–15. doi: 10.1111/j.1526-4610.1985.hed2501012.x. PMID: 3871754
  • Chou DE, Gross GJ, Casadei CH, Yugrakh MS. External trigeminal nerve stimulation for the acute treatment of migraine: open-label trial on safety and efficacy. Neuromodulation: Technol Neural Interface. 2017 Oct;20(7):678–683. doi: 10.1111/ner.12623. Epub 2017 Jun 5. PMID: 28580703.
  • Evers S. Non-invasive neurostimulation methods for acute and preventive migraine treatment-A narrative review. J Clin Med. 2021 Jul 27;10(15):3302. 10.3390/jcm10153302. PMID: 34362086; PMCID: PMC8347785.
  • Daniel O, Sharon R, Tepper SJ. A device review of Relivion®: an external combined occipital and trigeminal neurostimulation (eCOT-NS) system for self-administered treatment of migraine and major depressive disorder. Expert Rev Med Devices. 2021 Apr;18(4):333–342. doi: 10.1080/17434440.2021.1908122. Epub 2021 Apr 8. PMID: 33787443
  • Blech B, Starling AJ. Noninvasive neuromodulation in migraine. Curr Pain Headache Rep. 2020 Dec 16;24(12):78. doi: 10.1007/s11916-020-00914-3. PMID: 33326063.
  • Urits I, Schwartz R, Smoots D, et al. Peripheral neuromodulation for the management of Headache. Anesth Pain Med. 2020 Nov 30;10(6):e110515. doi: 10.5812/aapm.110515. PMID: 34150578; PMCID: PMC8207880.
  • Lauritsen CG, Silberstein SD. Rationale for electrical parameter determination in external trigeminal nerve stimulation (eTNS) for migraine: a narrative review. Cephalalgia. 2019 May;39(6):750–760. doi: 10.1177/0333102418796781. Epub 2018 Aug 23. PMID: 30139273
  • Börner C, Urban G, Beaulieu LD, Sollmann N, Krieg SM, Straube A, Renner T, Schandelmaier P, Lang M, Lechner M, Vill K, Gerstl L, Heinen F, Landgraf MN, Bonfert MV. The bottom-up approach: Non-invasive peripheral neurostimulation methods to treat migraine: A scoping review from the child neurologist’s perspective. Eur J Paediatr Neurol. 2021 May;32:16–28. doi: 10.1016/j.ejpn.2021.02.008. Epub 2021 Mar 1. PMID: 33743386
  • Przeklasa-Muszyńska A, Skrzypiec K, Kocot-Kępska M, Dobrogowski J, Wiatr M, Mika J. Non-invasive transcutaneous Supraorbital Neurostimulation (tSNS) using Cefaly® device in prevention of primary headaches. Neurol Neurochir Pol. 2017 Mar-Apr;51(2):127–134. doi: 10.1016/j.pjnns.2017.01.004. Epub 2017 Jan 20. PMID: 28159327.
  • Di Fiore P, Bussone G, Galli A, et al. Transcutaneous supraorbital neurostimulation for the prevention of chronic migraine: a prospective, open-label preliminary trial. Neurol Sci. 2017 May;38(Suppl 1):201–206. doi: 10.1007/s10072-017-2916-7. PMID: 28527053.
  • Vikelis M, Dermitzakis EV, Spingos KC, Vasiliadis GG, Vlachos GS, Kararizou E. Clinical experience with transcutaneous supraorbital nerve stimulation in patients with refractory migraine or with migraine and intolerance to topiramate: a prospective exploratory clinical study. BMC neurol. 2017 May 18;17(1):97. doi: 10.1186/s12883-017-0869-3. PMID: 28521762; PMCID: PMC5437420.
  • Dodick DW, Silberstein SD, Reed KL, et al. Safety and efficacy of peripheral nerve stimulation of the occipital nerves for the management of chronic migraine: long-term results from a randomized, multicenter, double-blinded, controlled study. Cephalalgia. 2015 Apr;35(4):344–358. doi: 10.1177/0333102414543331. Epub 2014 Jul 30. PMID: 25078718
  • Miller S, Watkins L, Matharu M. Long-term outcomes of occipital nerve stimulation for chronic migraine: a cohort of 53 patients. J Headache Pain. 2016 Dec;17(1):68. doi: 10.1186/s10194-016-0659-0. Epub 2016 Jul 30. PMID: 27475100; PMCID: PMC4967414
  • Antony AB, Mazzola AJ, Dhaliwal GS, et al. Neurostimulation for the treatment of chronic head and facial pain: a literature review. Pain Physician. 2019 Sep;22(5):447–477. doi: 10.36076/ppj/2019.22.447. PMID: 31561646.
  • Rapoport AM, Lin T, Tepper SJ. Remote Electrical Neuromodulation (REN) for the Acute Treatment of Migraine. Headache. 2020 Jan;60(1):229–234. doi: 10.1111/head.13669. Epub 2019 Nov 5. PMID: 31913517
  • Yarnitsky D, Dodick DW, Grosberg BM, Burstein R, Ironi A, Harris D, Lin T, Silberstein SD. Remote Electrical Neuromodulation (REN) Relieves Acute Migraine: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. Headache. 2019 Sep;59(8):1240–1252. doi: 10.1111/head.13551. Epub 2019 May 9. PMID: 31074005; PMCID: PMC6767146
  • Hershey AD, Lin T, Gruper Y, Harris D, Ironi A, Berk T, Szperka CL, Berenson F. Remote electrical neuromodulation for acute treatment of migraine in adolescents. Headache. 2021 Feb;61(2):310–317. doi: 10.1111/head.14042. Epub 2020 Dec 21. PMID: 33349920
  • DeGiorgio CM, Fanselow EE, Schrader LM, Cook IA. Trigeminal nerve stimulation: seminal animal and human studies for epilepsy and depression. Neurosurg Clin N Am. 2011 Oct;22(4):449–456. doi: 10.1016/j.nec.2011.07.001. v PMID: 21939843.
  • Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1(1–4):455–473. doi: 10.1016/0013-4694(49)90219-9
  • Englot DJ, Rolston JD, Wright CW, et al. Rates and predictors of seizure freedom with vagus nerve stimulation for intractable epilepsy. Neurosurgery. 2016 Sep;79(3):345–353. doi: 10.1227/NEU.0000000000001165. PMID: 26645965; PMCID: PMC4884552
  • Kawai K, Tanaka T, Baba H, Bunker M, Ikeda A, Inoue Y, Kameyama S, Kaneko S, Kato A, Nozawa T, Maruoka E, Osawa M, Otsuki T, Tsuji S, Watanabe E, Yamamoto T. Outcome of vagus nerve stimulation for drug-resistant epilepsy: the first three years of a prospective Japanese registry. Epileptic Disord. 2017 Sep 1;19(3):327–338. 10.1684/epd.2017.0929. PMID: 28832004.
  • Shafique S, Dalsing MC. Vagus nerve stimulation therapy for treatment of drug-resistant epilepsy and depression. Perspect Vasc Surg Endovasc Ther. 2006 Dec;18(4):323–327. doi: 10.1177/1531003506297200. PMID: 17351201.
  • Pop J, Murray D, Markovic D, DeGiorgio CM. Acute and long-term safety of external trigeminal nerve stimulation for drug-resistant epilepsy. Epilepsy Behav. 2011 Nov;22(3):574–576. doi: 10.1016/j.yebeh.2011.06.024. Epub 2011 Sep 29. PMID: 21959083.
  • Soss J, Heck C, Murray D, Markovic D, Oviedo S, Corrale-Leyva G, Gordon S, Kealey C, DeGiorgio C. A prospective long-term study of external trigeminal nerve stimulation for drug-resistant epilepsy. Epilepsy Behav. 2015 Jan;42:44–47. doi: 10.1016/j.yebeh.2014.10.029. Epub 2014 Dec 11. PMID: 25499162.
  • Gil-López F, Boget T, Manzanares I, Donaire A, Conde-Blanco E, Baillés E, Pintor L, Setoaín X, Bargalló N, Navarro J, Casanova J, Valls J, Roldán P, Rumià J, Casanovas G, Domenech G, Torres F, Carreño M. External trigeminal nerve stimulation for drug resistant epilepsy: A randomized controlled trial. Brain Stimul. 2020 Sep-Oct;13(5):1245–1253. doi: 10.1016/j.brs.2020.06.005. Epub 2020 Jun 10. PMID: 32534250.
  • DeGiorgio CM, Soss J, Cook IA, et al. Randomized controlled trial of trigeminal nerve stimulation for drug-resistant epilepsy. Neurology. 2013 Feb 26;80(9):786–791. doi: 10.1212/WNL.0b013e318285c11a. Epub 2013 Jan 30. PMID: 23365066; PMCID: PMC3598453.
  • Olivié L, Giraldez BG, Sierra-Marcos A, Díaz-Gómez E, Serratosa JM. External trigeminal nerve stimulation: a long term follow up study. Seizure. 2019 Jul;69:218–220. doi: 10.1016/j.seizure.2019.01.022. Epub 2019 Jan 24. PMID: 31108410
  • Slaght SJ, Nashef L. An audit of external trigeminal nerve stimulation (eTNS) in epilepsy. Seizure. 2017 Nov;52:60–62. doi: 10.1016/j.seizure.2017.09.004. Epub 2017 Sep 12. PMID: 28982040
  • Axelson HW, Isberg M, Flink R, et al. Trigeminal nerve stimulation does not acutely affect cortical excitability in healthy subjects. Brain Stimul. 2014 Jul-Aug;7(4):613–617. doi: 10.1016/j.brs.2014.04.010. Epub 2014 May 9. PMID: 24852898.
  • Ginatempo F, De Carli F, Todesco S, Mercante B, Sechi GP, Deriu F. Effects of acute trigeminal nerve stimulation on rest EEG activity in healthy adults. Exp Brain Res. 2018 Nov;236(11):2839–2845. doi: 10.1007/s00221-018-5338-8. Epub 2018 Jul 23. PMID: 30039458
  • Pilurzi G, Mercante B, Ginatempo F, Follesa P, Tolu E, Deriu F. Transcutaneous trigeminal nerve stimulation induces a long-term depression-like plasticity of the human blink reflex. Exp Brain Res. 2016 Feb;234(2):453–461. doi: 10.1007/s00221-015-4477-4. Epub 2015 Oct 29. PMID: 26514812
  • Bologna M, Agostino R, Gregori B, Belvisi D, Manfredi M, Berardelli A. Metaplasticity of the human trigeminal blink reflex. Eur J Neurosci. 2010 Nov;32(10):1707–1714. doi: 10.1111/j.1460-9568.2010.07446.x. Epub 2010 Oct 19. PMID: 20955470.
  • Philip NS, Nelson BG, Frohlich F, Lim KO, Widge AS, Carpenter LL. Low-intensity transcranial Current stimulation in Psychiatry. Am J Psychiatry. 2017 Jul 1;174(7):628–639. 10.1176/appi.ajp.2017.16090996. Epub 2017 Feb 24. PMID: 28231716; PMCID: PMC5495602.
  • Zugliani MM, Fidry M, Steffen RE, Lan K, Brietzke E, Milev R, Nardi AE, Freire RC. Clinical effectiveness of non-TMS neurostimulation in depression: clinical trials from 2010 to 2020. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Aug 30;110:110287. doi: 10.1016/j.pnpbp.2021.110287. Epub 2021 Feb 19. PMID: 33610609
  • Shiozawa P, Duailibi MS, da Silva ME, et al. Trigeminal nerve stimulation (TNS) protocol for treating major depression: an open-label proof-of-concept trial. Epilepsy Behav. 2014 Oct;39:6–9. doi: 10.1016/j.yebeh.2014.07.021. Epub 2014 Aug 23. PMID: 25150403.
  • Shiozawa P, da Silva ME, Netto GTM, et al. Effect of a 10-day trigeminal nerve stimulation (TNS) protocol for treating major depressive disorder: a phase II, sham-controlled, randomized clinical trial. Epilepsy Behav. 2015 Mar;44:23–26. doi: 10.1016/j.yebeh.2014.12.024. Epub 2015 Jan 16. PMID: 25597529.
  • Generoso MB, Taiar IT, Garrocini LP, Bernardon R, Cordeiro Q, Uchida RR, Shiozawa P. Effect of a 10-day transcutaneous trigeminal nerve stimulation (TNS) protocol for depression amelioration: a randomized, double blind, and sham-controlled phase II clinical trial. Epilepsy Behav. 2019 Jun;95:39–42. doi: 10.1016/j.yebeh.2019.03.025. Epub 2019 Apr 23. PMID: 31026780.
  • Shiozawa P, Cordeiro Q, Cho HJ, et al. A critical review of trials of transcranial direct current stimulation and trigeminal nerve stimulation for depression: the issue of treatment-emergent mania. Trends Psychiatry Psychother. 2017 Jan-Mar;39(1):48–53. doi: 10.1590/2237-6089-2016-0027. PMID: 28403323.
  • Cook IA, Abrams M, Leuchter AF. Trigeminal nerve stimulation for comorbid posttraumatic stress disorder and major depressive disorder. Neuromodulation: Technol Neural Interface. 2016 Apr;19(3):299–305. doi: 10.1111/ner.12399. Epub 2016 Jan 28. PMID: 26818103.
  • Goodman WK, Grice DE, Lapidus KA, et al. Obsessive-compulsive disorder. Psychiatr Clin North Am. 2014 Sep;37(3):257–267. doi: 10.1016/j.psc.2014.06.004. Epub 2014 Jul 23. PMID: 25150561.
  • Nakao T, Okada K, Kanba S. Neurobiological model of obsessive-compulsive disorder: evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin Neurosci. 2014 Aug;68(8):587–605. doi: 10.1111/pcn.12195. Epub 2014 Jun 18. PMID: 24762196.
  • Senova S, Clair AH, Palfi S, Yelnik J, Domenech P, Mallet L. Deep brain stimulation for refractory obsessive-compulsive disorder: towards an individualized approach. Front Psychiatry. 2019 Dec 13;10:905. 10.3389/fpsyt.2019.00905. PMID: 31920754; PMCID: PMC6923766
  • Wu H, Hariz M, Visser-Vandewalle V, Zrinzo L, Coenen VA, Sheth SA, Bervoets C, Naesström M, Blomstedt P, Coyne T, Hamani C, Slavin K, Krauss JK, Kahl KG, Taira T, Zhang C, Sun B, Toda H, Schlaepfer T, Chang JW, Régis J, Schuurman R, Schulder M, Doshi P, Mosley P, Poologaindran A, Lázaro-Muñoz G, Pepper J, Schechtmann G, Fytagoridis A, Huys D, Gonçalves-Ferreira A, D’Haese PF, Neimat J, Broggi G, Vilela-Filho O, Voges J, Alkhani A, Nakajima T, Richieri R, Djurfeldt D, Fontaine P, Martinez-Alvarez R, Okamura Y, Chandler J, Watanabe K, Barcia JA, Reneses B, Lozano A, Gabriëls L, De Salles A, Halpern CH, Matthews K, Fins JJ, Nuttin B. Deep brain stimulation for refractory obsessive-compulsive disorder (OCD): emerging or established therapy? Mol Psychiatry. 2021 Jan;26(1):60–65. doi: 10.1038/s41380-020-00933-x. Epub 2020 Nov 3. PMID: 33144712; PMCID: PMC7815503
  • Cancer A, Antonietti A. tDCS modulatory effect on reading processes: a review of studies on typical readers and individuals with dyslexia. Front Behav Neurosci. 2018 Jul 31;12:162. 10.3389/fnbeh.2018.00162. PMID: 30108491; PMCID: PMC6079298
  • Costanzo F, Varuzza C, Rossi S, et al. Reading changes in children and adolescents with dyslexia after transcranial direct current stimulation. Neuroreport. 2016 Mar 23;27(5):295–300. doi: 10.1097/WNR.0000000000000536. PMID: 26848997.
  • Chiluwal A, Narayan RK, Chaung W, Mehan N, Wang P, Bouton CE, Golanov EV, Li C. Neuroprotective effects of trigeminal nerve stimulation in severe traumatic brain injury. Sci Rep. 2017 Jul 28;7(1):6792. doi: 10.1038/s41598-017-07219-3. PMID: 28754973; PMCID: PMC5533766.
  • Li C, Shah KA, Powell K, Wu YC, Chaung W, Sonti AN, White TG, Doobay M, Yang WL, Wang P, Becker LB, Narayan RK. CBF oscillations induced by trigeminal nerve stimulation protect the pericontusional penumbra in traumatic brain injury complicated by hemorrhagic shock. Sci Rep. 2021 Oct 4;11(1):19652. doi: 10.1038/s41598-021-99234-8. PMID: 34608241; PMCID: PMC8490389.
  • Wang QQ, Zhu LJ, Wang XH, Zuo J, He HY, Tian MM, Wang L, Liang GL, Wang Y. Chronic Trigeminal Nerve Stimulation Protects Against Seizures, Cognitive Impairments, Hippocampal Apoptosis, and Inflammatory Responses in Epileptic Rats. J Mol Neurosci. 2016 May;59(1):78–89. doi: 10.1007/s12031-016-0736-5. Epub 2016 Mar 14. PMID: 26973056
  • Mercante B, Enrico P, Floris G, Quartu M, Boi M, Serra MP, Follesa P, Deriu F. Trigeminal nerve stimulation induces fos immunoreactivity in selected brain regions, increases hippocampal cell proliferation and reduces seizure severity in rats. Neuroscience. 2017 Oct 11;361:69–80. doi: 10.1016/j.neuroscience.2017.08.012. Epub 2017 Aug 12. PMID: 28807787
  • Arnsten AF. Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry. 2006;67(Suppl 8):7–12. 51.
  • Aston-Jones G, Rajkowski J, Kubiak P, et al. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci. 1994;14(7):4467–4480.
  • Shaheen S. How child’s play impacts executive function–related behaviors. Applied Neuropsychology: Child. 2014;3(3):182–187. doi: 10.1080/21622965.2013.839612. PMID: 25010084.
  • Kasparek T, Theiner P, Filova A. Neurobiology of ADHD from childhood to adulthood: findings of Imaging methods. J Atten Disord. 2015 Nov;19(11):931–943. doi: 10.1177/1087054713505322. Epub 2013 Oct 4. PMID: 24097847
  • McGough JJ, Loo SK, Sturm A, Cowen J, Leuchter AF, Cook IA. An eight-week, open-trial, pilot feasibility study of trigeminal nerve stimulation in youth with attention-deficit/hyperactivity disorder. Brain Stimul. 2015 Mar-Apr;8(2):299–304. doi: 10.1016/j.brs.2014.11.013. Epub 2014 Nov 28. PMID: 25533244.
  • McGough JJ, Sturm A, Cowen J, et al. Pilot study of trigeminal nerve stimulation for attention-deficit/Hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2019 Apr;58(4):403–411.e3. doi: 10.1016/j.jaac.2018.11.013. Epub 2019 Jan 28. PMID: 30768393; PMCID: PMC6481187.
  • Danilov Y, Kaczmarek K, Skinner K, et al. Cranial nerve Noninvasive neuromodulation: new approach to neurorehabilitation. In: Kobeissy F, editor. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. Chapter 44, p. 535–556. PMID: 26269928.
  • Bach-Y-Rita P, Collins CC, Saunders FA, et al. Vision substitution by tactile image projection. Trans Pac Coast Otoophthalmol Soc Annu Meet. 1969;50:83–91. PMID: 4924579.
  • Bach-Y-Rita P. Tactile sensory substitution studies. Ann N Y Acad Sci. 2004 May;1013:83–91. doi: 10.1196/annals.1305.006. PMID: 15194608.
  • Bach-Y-Rita P, SW K. Sensory substitution and the human–machine interface. Trends Cogn Sci. 2003 Dec;7(12):541–546. doi: 10.1016/j.tics.2003.10.013. PMID: 14643370.
  • Bach-Y-Rita P, Tyler ME. Tongue man-machine interface. Stud Health Technol Inform. 2000;70:17–19. PMID: 10977534.
  • Stronks HC, Mitchell EB, Nau AC, Barnes N. Visual task performance in the blind with the BrainPort V100 vision aid. Expert Rev Med Devices. 2016 Oct;13(10):919–931. doi: 10.1080/17434440.2016.1237287. Epub 2016 Oct 5. PMID: 27633972
  • Grant P, Maeng M, Arango T, Hogle R, Szlyk J, Seiple W. Performance of real-world functional Tasks using an updated oral electronic vision device in persons blinded by trauma. Optom Vis Sci. 2018 Sep;95(9):766–773. doi: 10.1097/OPX.0000000000001273. PMID: 30169354
  • Tyler M, Danilov Y, Bach-Y-Rita P. Closing an open-loop control system: vestibular substitution through the tongue. J Integr Neurosci. 2003 Dec;2(2):159–164. doi: 10.1142/s0219635203000263. PMID: 15011268.
  • Danilov YP, Tyler ME, Skinner KL, et al. Efficacy of electrotactile vestibular substitution in patients with bilateral vestibular and central balance loss. Conf Proc IEEE Eng Med Biol Soc. 2006;Suppl:6605–6609. doi: 10.1109/IEMBS.2006.260899. PMID: 17959464.
  • Barros CG, Bittar RS, Danilov Y. Effects of electrotactile vestibular substitution on rehabilitation of patients with bilateral vestibular loss. Neurosci Lett. 2010 Jun 7;476(3):123–126. 10.1016/j.neulet.2010.04.012. Epub 2010 Apr 14. PMID: 20398733.
  • Robinson BS, Cook JL, Richburg CM, Price SE. Use of an electrotactile vestibular substitution system to facilitate balance and gait of an individual with gentamicin-induced bilateral vestibular hypofunction and bilateral transtibial amputation. J Neurol Phys Ther. 2009 Sep;33(3):150–159. doi: 10.1097/NPT.0b013e3181a79373. PMID: 19809394.
  • SM S, Harbourne R, Corr B, et al. Exploration of a novel physical therapy protocol that uses a sensory substitution device to improve the standing postural balance of children with balance disorders. Physiother Theory Pract. 2020 Jul;2:1–11. doi: 10.1080/09593985.2020.1786869. Epub ahead of print. PMID: 32615828
  • Chisholm AE, Malik RN, Blouin JS, et al. Feasibility of sensory tongue stimulation combined with task-specific therapy in people with spinal cord injury: a case study. J Neuroeng Rehabil. 2014 Jun 6;11(1):96. 10.1186/1743-0003-11-96. PMID: 24906679; PMCID: PMC4057581.
  • Nau A, Hertle RW, Yang D. Effect of tongue stimulation on nystagmus eye movements in blind patients. Brain Struct Funct. 2012 Jul;217(3):761–765. doi: 10.1007/s00429-012-0392-7. Epub 2012 Feb 21. PMID: 22350083
  • Ilg UJ. Slow eye movements. Prog Neurobiol. 1997 Oct;53(3):293–329. doi: 10.1016/s0301-0082(97)00039-7. PMID: 9364615.
  • Fetter M. Vestibulo-ocular reflex. Dev Ophthalmol. 2007;40:35–51. doi: 10.1159/000100348. PMID: 17314478.
  • Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull. Brain Res Bull. 2003 Jun 15;60(5–6):511–541. 10.1016/s0361-9230(03)00055-8. PMID: 12787870.
  • Zwergal A, Strupp M, Brandt T, et al. Parallel ascending vestibular pathways: anatomical localization and functional specialization. Ann N Y Acad Sci. 2009 May;1164(1):51–59. doi: 10.1111/j.1749-6632.2009.04461.x. PMID: 19645880.
  • Büttner-Ennever JA, Büttner U. Neuroanatomy of the oculomotor system. The reticular formation. Rev Oculomot Res. 1988;2:119–176. PMID: 3153645.
  • Büttner-Ennever JA. A review of otolith pathways to brainstem and cerebellum. Ann N Y Acad Sci. 1999 May 28;871(1):51–64. 10.1111/j.1749-6632.1999.tb09175.x. PMID: 10372062.
  • De Cicco V, Tramonti Fantozzi MP, Cataldo E, et al. Trigeminal, visceral and vestibular inputs May improve cognitive functions by acting through the locus coeruleus and the ascending reticular activating system: a new hypothesis. Front Neuroanat. 2018 Jan 8;11:130. 10.3389/fnana.2017.00130. PMID: 29358907; PMCID: PMC5766640
  • Mesin L, Monaco A, Cattaneo R. Investigation of nonlinear pupil dynamics by recurrence quantification analysis. Bio Med Res Int. 2013;2013:1–11. doi: 10.1155/2013/420509. Epub 2013 Sep 26. PMID: 24187665; PMCID: PMC3804145. 2013 Sep 21. PMID: 24057824
  • Tyler M, Skinner K, Prabhakaran V, et al. Translingual neurostimulation for the treatment of chronic symptoms due to mild-to-moderate traumatic brain injury. Arch Rehabil Res Clin Transl. 2019 Sep 27;1(3–4):100026. 10.1016/j.arrct.2019.100026. PMID: 33543056; PMCID: PMC7853385.
  • Wardini R, Moses M. Portable neuromodulation stimulation (PoNSTM) therapy efficacy for the treatment of traumatic brain injury compared to standard of care. Brain Inj. 2017;31(6–7):806.
  • Tyler ME, Kaczmarek KA, Rust KL, et al. Non-invasive neuromodulation to improve gait in chronic multiple sclerosis: a randomized double blind controlled pilot trial. J Neuroeng Rehabil. 2014 May 1;11(1):79. 10.1186/1743-0003-11-79. PMID: 24885412; PMCID: PMC4017705.
  • Leonard G, Lapierre Y, Chen JK, Wardini R, Crane J, Ptito A. Noninvasive tongue stimulation combined with intensive cognitive and physical rehabilitation induces neuroplastic changes in patients with multiple sclerosis: a multimodal neuroimaging study. Mult Scler J Exp Transl Clin. 2017 Feb 1;3(1):2055217317690561. 10.1177/2055217317690561. PMID: 28607750; PMCID: PMC5466147.
  • Bastani A, Cofré Lizama LE, Zoghi M, et al. The combined effect of cranial-nerve non-invasive neuromodulation with high-intensity physiotherapy on gait and balance in a patient with cerebellar degeneration: a case report. Cerebellum Ataxias. 2018 Mar 5;5(1):6. 10.1186/s40673-018-0084-z. PMID: 29556411; PMCID: PMC5838879.
  • Wildenberg JC, Tyler ME, Danilov YP, Kaczmarek KA, Meyerand ME. Sustained cortical and subcortical neuromodulation induced by electrical tongue stimulation. Brain Imaging Behav. 2010 Dec;4(3–4):199–211. doi: 10.1007/s11682-010-9099-7. PMID: 20614202; PMCID: PMC2970617.
  • Boughen K, Neil T, Dullemond S, Lutowicz K, Bilgasem A, Hastings T, Brooks D, Vaughan-Graham J. Cranial nerve Noninvasive neuromodulation in adults with neurological conditions: protocol for a scoping review. JMIR Res Protoc. 2021 Jul 28;10(7):e29965. doi: 10.2196/29965. PMID: 34319251; PMCID: PMC8367107.
  • De Ridder D, Vanneste S, Langguth B, et al. Thalamocortical Dysrhythmia: A Theoretical Update in Tinnitus. Front Neurol. 2015 Jun 9;6:124. 10.3389/fneur.2015.00124. PMID: 26106362; PMCID: PMC4460809
  • Vanneste S, Alsalman O, De Ridder D. Top-down and Bottom-up regulated auditory phantom perception. J Neurosci. 2019 Jan 9;39(2):364–378. 10.1523/JNEUROSCI.0966-18.2018. Epub 2018 Nov 2. PMID: 30389837; PMCID: PMC6360282.
  • Palomero-Gallagher N, Hoffstaedter F, Mohlberg H, Eickhoff SB, Amunts K, Zilles K. Human Pregenual Anterior Cingulate Cortex: Structural, Functional, and Connectional Heterogeneity. Cereb Cortex. 2019 Jun 1;29(6):2552–2574. doi: 10.1093/cercor/bhy124. PMID: 29850806; PMCID: PMC6519696.
  • De Ridder D, Elgoyhen AB, Romo R, Langguth B. Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8075–8080. 10.1073/pnas.1018466108. Epub 2011 Apr 18. PMID: 21502503; PMCID: PMC3100980.
  • Mohan A, Davidson C, De Ridder D, et al. Effective connectivity analysis of inter- and intramodular hubs in phantom sound perception – identifying the core distress network. Brain Imaging Behav. 2020 Feb;14(1):289–307. doi: 10.1007/s11682-018-9989-7. PMID: 30443893.
  • Vanneste S, De Ridder D. Stress-related functional connectivity changes between auditory cortex and cingulate in tinnitus. Brain Connect. 2015 Aug;5(6):371–383. doi: 10.1089/brain.2014.0255. Epub 2015 Mar 26. PMID: 25611454.
  • Peter N, Kleinjung T. Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques. J Zhejiang Univ Sci B. 2019 Feb;20(2):116–130. doi: 10.1631/jzus.B1700117. Epub 2018 Mar 12. PMID: 29770647; PMCID: PMC6380997
  • Marks KL, Martel DT, Wu C, Basura GJ, Roberts LE, Schvartz-Leyzac KC, Shore SE. Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans. Sci Transl Med. 2018 Jan 3;10(422):eaal3175. 10.1126/scitranslmed.aal3175. PMID: 29298868; PMCID: PMC5863907.
  • Hamilton C, D’Arcy S, Pearlmutter BA, Crispino G, Lalor EC, Conlon BJ. An Investigation of feasibility and safety of bi-modal stimulation for the treatment of tinnitus: an open-label pilot study. Neuromodulation: Technol Neural Interface. 2016 Dec;19(8):832–837. doi: 10.1111/ner.12452. Epub 2016 Jun 16. PMID: 27310062; PMCID: PMC5157761.
  • Conlon B, Langguth B, Hamilton C, Hughes S, Meade E, Connor CO, Schecklmann M, Hall DA, Vanneste S, Leong SL, Subramaniam T, D’Arcy S, Lim HH. Bimodal neuromodulation combining sound and tongue stimulation reduces tinnitus symptoms in a large randomized clinical study. Sci Transl Med. 2020 Oct 7;12(564):eabb2830. 10.1126/scitranslmed.abb2830. PMID: 33028707.
  • Han BI, Lee HW, Ryu S, Kim JS. Tinnitus update. J Clin Neurol. 2021 Jan;17(1):1–10. doi: 10.3988/jcn.2021.17.1.1. PMID: 33480192; PMCID: PMC7840320
  • Cheung SW, Racine CA, Henderson-Sabes J, et al. Phase I trial of caudate deep brain stimulation for treatment-resistant tinnitus. J Neurosurg. 2019 Sep;24:1–10. doi: 10.3171/2019.4.JNS19347. Epub ahead of print. PMID: 31553940; PMCID: PMC7089839
  • Aazh H, Landgrebe M, Danesh AA, Moore BC. Cognitive behavioral therapy for alleviating the distress caused by tinnitus, hyperacusis and Misophonia: Current perspectives. Psychology Research And Behavior Management. 2019 Oct 23;12: 991–1002. doi: 10.2147/PRBM.S179138. PMID: 31749641; PMCID: PMC6817772.
  • Fuller T, Cima R, Langguth B, et al. Cognitive behavioural therapy for tinnitus. Cochrane Database Syst Rev. 2020 Jan 8;2020(1). doi: 10.1002/14651858.CD012614.pub2. CD012614 PMID: 31912887; PMCID: PMC6956618
  • Bevilaqua Grossi D, Lipton RB, Bigal ME. Temporomandibular disorders and migraine chronification. Curr Pain Headache Rep. 2009 Aug;13(4):314–318. doi: 10.1007/s11916-009-0050-9. PMID: 19586596.
  • Graff-Radford SB, Abbott JJ. Temporomandibular disorders and Headache. Oral Maxillofac Surg Clin North Am. 2016 Aug;28(3):335–349. doi: 10.1016/j.coms.2016.03.004. PMID: 27475510.
  • Monaco A, Spadaro A, Cattaneo R, Giannoni M. Effects of myogenous facial pain on muscle activity of head and neck. Int J Oral Maxillofac Surg. 2010 Aug;39(8):767–773. doi: 10.1016/j.ijom.2010.03.025. Epub 2010 May 2. PMID: 20439150.
  • Chen H, Nackley A, Miller V, Diatchenko L, Maixner W. Multisystem dysregulation in painful temporomandibular disorders. J Pain. 2013 Sep;14(9):983–996. doi: 10.1016/j.jpain.2013.03.011. Epub 2013 May 28. PMID: 23721875; PMCID: PMC3770463
  • Ayouni I, Chebbi R, Hela Z, Dhidah M. Comorbidity between fibromyalgia and temporomandibular disorders: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019 Jul;128(1):33–42. doi: 10.1016/j.oooo.2019.02.023. Epub 2019 Feb 28. PMID: 30981530.
  • AIS DO-S, deoFerro JK, MMMB B, et al. Cervical musculoskeletal disorders in patients with temporomandibular dysfunction: a systematic review and meta-analysis. J Bodyw Mov Ther. 2020 Oct;24(4):84–101. doi: 10.1016/j.jbmt.2020.05.001. Epub 2020 May 11. PMID: 33218570.
  • Skog C, Fjellner J, Ekberg E, et al. Tinnitus as a comorbidity to temporomandibular disorders-A systematic review. J Oral Rehabil. 2019 Jan;46(1):87–99. doi: 10.1111/joor.12710. Epub 2018 Sep 9. PMID: 30126027.
  • Bousema EJ, Koops EA, van Dijk P, et al. Association between subjective tinnitus and cervical spine or temporomandibular disorders: a systematic review. Trends Hear. 2018 Jan-Dec;22:2331216518800640. doi: 10.1177/2331216518800640. PMID: 30269683; PMCID: PMC6168723.
  • Porto De Toledo I, Stefani FM, Porporatti AL, Mezzomo LA, Peres MA, Flores-Mir C, De Luca Canto G. Prevalence of otologic signs and symptoms in adult patients with temporomandibular disorders: a systematic review and meta-analysis. Clin Oral Investig. 2017 Mar;21(2):597–605. doi: 10.1007/s00784-016-1926-9. Epub 2016 Aug 10. PMID: 27511214
  • Magalhães BG, Freitas JLM, Barbosa ACDS, et al. Temporomandibular disorder: otologic implications and its relationship to sleep bruxism. Braz J Otorhinolaryngol. 2018 Sep-Oct;84(5):614–619. doi: 10.1016/j.bjorl.2017.07.010. Epub 2017 Aug 23. PMID: 28966039.
  • Robinson LJ, Durham J, Newton JL. A systematic review of the comorbidity between temporomandibular disorders and chronic fatigue syndrome. J Oral Rehabil. 2016 Apr;43(4):306–316. doi: 10.1111/joor.12367. Epub 2015 Nov 9. PMID: 26549386.
  • Rehm DD, Progiante PS, Pattussi MP, et al. Sleep disorders in patients with temporomandibular disorders (TMD) in an adult population-based cross-sectional survey in southern brazil. Int J Prosthodont. 2020 Jan/Feb;33(1):9–13. doi: 10.11607/ijp.6223. PMID: 31860908.
  • Maixner W, Greenspan JD, Dubner R, et al. Potential autonomic risk factors for chronic TMD: descriptive data and empirically identified domains from the OPPERA case-control study. J Pain. 2011 Nov;12(11 Suppl):T75–91. doi: 10.1016/j.jpain.2011.09.002. PMID: 22074754; PMCID: PMC3233841.
  • Nijs J, Malfliet A, Ickmans K, Baert I, Meeus M. Treatment of central sensitization in patients with ‘unexplained’ chronic pain: an update. Expert Opin Pharmacother. 2014 Aug;15(12):1671–1683. doi: 10.1517/14656566.2014.925446. Epub 2014 Jun 15. PMID: 24930805.
  • Nijs J, Leysen L, Vanlauwe J, Logghe T, Ickmans K, Polli A, Malfliet A, Coppieters I, Huysmans E. Treatment of central sensitization in patients with chronic pain: time for change? Expert Opin Pharmacother. 2019 Nov;20(16):1961–1970. doi: 10.1080/14656566.2019.1647166. Epub 2019 Jul 29. PMID: 31355689.
  • Fantozzi MPT, Banfi T, De Cicco V, et al. Assessing pupil-linked changes in locus coeruleus-mediated arousal elicited by trigeminal stimulation. JoVe. 2019 Nov;26(153). doi:10.3791/59970. PMID: 31840660
  • Tramonti Fantozzi MP, De Cicco V, Barresi M, et al. Short-term effects of chewing on task performance and task-Induced Mydriasis: trigeminal influence on the arousal systems. Front Neuroanat. 2017 Aug 8;11:68. 10.3389/fnana.2017.00068. PMID: 28848404; PMCID: PMC5550729
  • De Cicco V, Cataldo E, Barresi M, et al. Sensorimotor trigeminal unbalance modulates pupil size. Arch Ital Biol. 2014 Mar;152(1):1–12. doi: 10.12871/00039829201411. PMID: 25181592.
  • Tramonti Fantozzi MP, De Cicco V, Argento S, De Cicco D, Barresi M, Cataldo E, Bruschini L, d’Ascanio P, Faraguna U, Manzoni D. Trigeminal input, pupil size and cognitive performance: From oral to brain matter. Brain Res. 2021 Jan 15;1751:147194. 10.1016/j.brainres.2020.147194. Epub 2020 Nov 4. PMID: 33159973
  • De Cicco V, Barresi M, Tramonti Fantozzi MP, et al. Oral implant-prostheses: new teeth for a brighter brain. PLoS One. 2016 Feb 26;11(2):e0148715. doi: 10.1371/journal.pone.0148715. PMID: 26919258; PMCID: PMC4771091.
  • Bradnam L, Barry C. The role of the trigeminal sensory nuclear complex in the pathophysiology of craniocervical dystonia. J Neurosci. 2013 Nov 20;33(47):18358–18367. 10.1523/JNEUROSCI.3544-13.2013. PMID: 24259561; PMCID: PMC6618800.
  • Jankelson B. Electronic control of muscle contraction–a new clinical era in occlusion and prosthodontics. Sci Educ Bull. 1969;2(1): 29–31. PMID: 4949886.
  • Jankelson B, Radke JC. The myo-monitor: its use and abuse (I). Quintessence Int Dent Dig. 1978 Feb;9(2):47–52. PMID: 275947.
  • Jankelson B, Radke JC. The myo-monitor: its use and abuse (II). Quintessence Int Dent Dig. 1978 Mar;9(3):35–39. PMID: 287118.
  • Jankelson B, Swain CW. Physiological aspects of masticatory muscle stimulation: the myomonitor. Quintessence Int Dent Dig. 1972 Dec;3(12):57–62. PMID: 4510478.
  • Jankelson B, Sparks S, Crane PF, Radke JC. Neural conduction of the myo-monitor stimulus: a quantitative analysis. J Prosthet Dent. 1975 Sep;34(3):245–253. doi: 10.1016/0022-3913(75)90100-6. PMID: 22334985.
  • Jankelson B. Neuromuscular aspects of occlusion. Effects of occlusal position on the physiology and dysfunction of the mandibular musculature. Dent Clin North Am. 1979 Apr;23(2):157–168. doi: 10.1016/S0011-8532(22)03188-3. PMID: 285895.
  • Cooper BC. Neuromuscular occlusion: concept and application. N Y State Dent J. 1990 Apr;56(4):24–28. PMID: 2183101.
  • Monaco A, Cattaneo R, Marci MC, et al. Neuromuscular diagnosis in orthodontics: effects of TENS on maxillo-mandibular relationship. Eur J Paediatr Dent. 2007 Sep;8(3):143–148. PMID: 17919063.
  • Monaco A, Cattaneo R, Masci C, et al. Effect of ill-fitting dentures on the swallowing duration in patients using polygraphy. Gerodontology. 2012 Jun;29(2):e637–44. doi: 10.1111/j.1741-2358.2011.00536.x. Epub 2011 Sep 16. PMID: 21923894
  • Monaco A, Cattaneo R, Spadaro A, et al. Neuromuscular diagnosis in orthodontics: effects of TENS on the sagittal maxillo-mandibular relationship. Eur J Paediatr Dent. 2008 Dec;9(4):163–169. PMID: 19072003.
  • Manfredini D, Castroflorio T, Perinetti G, Guarda-Nardini L. Dental occlusion, body posture and temporomandibular disorders: where we are now and where we are heading for. J Oral Rehabil. 2012 Jun;39(6):463–471. doi: 10.1111/j.1365-2842.2012.02291.x. Epub 2012 Mar 21. PMID: 22435603.
  • Chipaila N, Sgolastra F, Spadaro A, et al. The effects of ULF-TENS stimulation on gnathology: the state of the art. Cranio. 2014 Apr;32(2):118–130. doi: 10.1179/0886963413Z.00000000018. PMID: 24839723.
  • Kamyszek G, Ketcham R, Garcia RJ, et al. Electromyographic evidence of reduced muscle activity when ULF-TENS is applied to the vth and VIIth cranial nerves. Cranio. 2001 Jul;19(3):162–168. doi: 10.1080/08869634.2001.11746165. PMID: 11482827.
  • Bazzotti L. Electromyography tension and frequency spectrum analysis at rest of some masticatory muscles, before and after TENS. Electromyogr Clin Neurophysiol. 1997 Sep;37(6):365–378. PMID: 9313998.
  • Monaco A, Sgolastra F, Ciarrocchi I, et al. Effects of transcutaneous electrical nervous stimulation on electromyographic and kinesiographic activity of patients with temporomandibular disorders: a placebo-controlled study. J Electromyogr Kinesiol. 2012 Jun;22(3):463–468. doi: 10.1016/j.jelekin.2011.12.008. Epub 2012 Jan 14. PMID: 22245620.
  • Mummolo S, Nota A, Tecco S, et al. Ultra-low-frequency transcutaneous electric nerve stimulation (ULF-TENS) in subjects with craniofacial pain: a retrospective study. CRANIO®. 2020 Nov;38(6):396–401. doi: 10.1080/08869634.2018.1526849. Epub 2018 Oct 8. PMID: 30295164.
  • Shapira IL. Neuromuscular dentistry and the role of the autonomic nervous system: sphenopalatine ganglion blocks and neuromodulation. An international college of cranio mandibular orthopedics (ICCMO) position paper. CRANIO®. 2019 May;37(3):201–206. doi: 10.1080/08869634.2019.1592807. PMID: 30973097.
  • Konchak PA, Thomas NR, Lanigan DT, et al. Freeway space measurement using mandibular kinesiograph and EMG before and after TENS. Angle Orthod. 1988 Oct;58(4):343–350. doi: 10.1043/0003-3219(1988)058<0343:FSMUMK>2.0.CO;2. PMID: 3264667
  • Williamson EH, DE M Jr. Myomonitor rest position in the presence and absence of stress. Facial Orthop Temporomandibular Arthrol. 1986 Feb;3(2):14–17. PMID: 3488231.
  • Ganguly J, Kulshreshtha D, Almotiri M, Jog M. Muscle tone physiology and abnormalities. Toxins (Basel). 2021 Apr 16;13(4):282. doi: 10.3390/toxins13040282. PMID: 33923397; PMCID: PMC8071570.
  • Jones BE. Arousal systems. Front Biosci. 2003 May 1;8(6):s438–51. 10.2741/1074. PMID: 12700104.
  • Kiyashchenko LI, Mileykovskiy BY, Lai YY, Siegel JM. Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area. J Neurophysiol. 2001 May;85(5):2008–2016. doi: 10.1152/jn.2001.85.5.2008. PMID: 11353017.
  • Mileykovskiy BY, Kiyashchenko LI, Kodama T, Lai YY, Siegel JM. Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region. J Neurosci. 2000 Nov 15;20(22):8551–8558. 10.1523/JNEUROSCI.20-22-08551.2000. PMID: 11069963; PMCID: PMC6773155.
  • Monaco A, Sgolastra F, Pietropaoli D, et al. Comparison between sensory and motor transcutaneous electrical nervous stimulation on electromyographic and kinesiographic activity of patients with temporomandibular disorder: a controlled clinical trial. BMC Musculoskelet Disord. 2013 May 15;14(1):168. 10.1186/1471-2474-14-168. PMID: 23672400; PMCID: PMC3660267.
  • Mesin L, Monaco A, Cattaneo R. Investigation of nonlinear pupil dynamics by recurrence quantification analysis. Bio Med Res Int. 2013;2013:1–11. doi: 10.1155/2013/420509. Epub 2013 Sep 26. PMID: 24187665; PMCID: PMC3804145
  • Liyanarachchi K, Ross R, Debono M. Human studies on hypothalamo-pituitary-adrenal (HPA) axis. Best Pract Res Clin Endocrinol Metab. 2017 Oct;31(5):459–473. doi: 10.1016/j.beem.2017.10.011. Epub 2017 Nov 2. PMID: 29223281.
  • Monaco A, Cattaneo R, Mesin L, et al. Evaluation of autonomic nervous system in sleep apnea patients using pupillometry under occlusal stress: a pilot study. CRANIO®. 2014 Apr;32(2):139–147. doi: 10.1179/0886963413Z.00000000022. PMID: 24839725.
  • Monaco A, Cattaneo R, Mesin L, et al. Dysregulation of the autonomous nervous system in patients with temporomandibular disorder: a pupillometric study. PLoS One. 2012;7(9):e45424. doi: 10.1371/journal.pone.0045424. Epub 2012 Sep 18. PMID: 23028999; PMCID: PMC3445536.
  • Monaco A, Cattaneo R, Mesin L, et al. Dysregulation of the descending pain system in temporomandibular disorders revealed by low-frequency sensory transcutaneous electrical nerve stimulation: a pupillometric study. PLoS One. 2015 Apr 23;10(4):e0122826. 10.1371/journal.pone.0122826. PMID: 25905862; PMCID: PMC4408101.
  • Ortu E, Pietropaoli D, Mazzei G, Cattaneo R, Giannoni M, Monaco A. TENS effects on salivary stress markers: a pilot study. Int J Immunopathol Pharmacol. 2015 Mar;28(1):114–118. doi: 10.1177/0394632015572072. PMID: 25816413
  • Nater UM, Rohleder N, Gaab J, et al. Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. Int J Psychophysiol. 2006;55(3):333–342.
  • van Stegeren A, Rohleder N, Everaerd W, e al. Salivary alpha amylase as marker for adrenergic activity during stress: Effect of betablockade. Psychoneuroendocrinology. 2006;31(1):137–141 doi:10.1016/j.psyneuen.2005.05.012
  • Ishitobi Y, Akiyoshi J, Tanaka Y, et al. Elevated salivary α-amylase and cortisol levels in unremitted and remitted depressed patients. Int J Psychiatry Clin Pract. 2010;14(4):268–273.
  • Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the european society of cardiology and the north American society of pacing and electrophysiology. Eur Heart J. 1996 Mar;17(3):354–381. doi:10.1093/oxfordjournals.eurheartj.a014868. PMID: 8737210
  • Schiweck C, Piette D, Berckmans D, Claes S, Vrieze E. Heart rate and high frequency heart rate variability during stress as biomarker for clinical depression. A systematic review. Psychol Med. 2019 Jan;49(2):200–211. doi: 10.1017/S0033291718001988. Epub 2018 Aug 23. PMID: 30134999.
  • Al-Shargie F, Boon Tang T, Kiguchi M Mental stress grading based on fNIRS signals. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug:5140–5143. doi: 10.1109/EMBC.2016.7591884. PMID: 28269424.
  • Al-Shargie F, Kiguchi M, Badruddin N, et al. Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomed Opt Express. 2016 Sep 6;7(10):3882–3898. 10.1364/BOE.7.003882. PMID: 27867700; PMCID: PMC5102531.
  • Machado AV, Pereira MG, Souza GGL, Xavier M, Aguiar C, de Oliveira L, Mocaiber I. Association between distinct coping styles and heart rate variability changes to an acute psychosocial stress task. Sci Rep. 2021 Dec 15;11(1):24025. doi: 10.1038/s41598-021-03386-6. PMID: 34911998.
  • Monaco A, Cattaneo R, Ortu E, Constantinescu MV, Pietropaoli D. Sensory trigeminal ULF-TENS stimulation reduces HRV response to experimentally induced arithmetic stress: a randomized clinical trial. Physiol Behav. 2017 May 1;173:209–215. 10.1016/j.physbeh.2017.02.014. Epub 2017 Feb 14. PMID: 28213205
  • Prasad Hrishi A, Ruby Lionel K, Prathapadas U. Head rules over the heart: cardiac manifestations of cerebral disorders. Indian J Crit Care Med. 2019 Jul;23(7):329–335. doi: 10.5005/jp-journals-10071-23208. PMID: 31406441; PMCID: PMC6686577.
  • Arnold RW. The Oculocardiac Reflex: A Review. Clin Ophthalmol. 2021 Jun 24;15:2693–2725. 10.2147/OPTH.S317447. PMID: 34194223; PMCID: PMC8238553
  • Godek D, Freeman AM. Physiology, diving reflex. StatPearls [Internet] PMID: 30855833 Treasure Island (FL): StatPearls Publishing; 2021Jan 2021 Sep 28
  • Henssen DJHA, Derks B, van Doorn M, et al. Visualizing the trigeminovagal complex in the human medulla by combining ex-vivo ultra-high resolution structural MRI and polarized light imaging microscopy. Sci Rep. 2019 Aug 5;9(1):11305. 10.1038/s41598-019-47855-5. PMID: 31383932; PMCID: PMC6683146.
  • Monaco A, Cattaneo R, Smurra P, et al. Trigeminal electrical stimulation with ULFTENS of the dorsal anterior mucosal surface of the tongue: effects on heart rate variability (HRV). PLoS One. 2023 May 10;18(5):e0285464. 10.1371/journal.pone.0285464. PMID: 37163499; PMCID: PMC10171590.
  • Monaco A, Cattaneo R, Marci MC, et al. Central sensitization-based classification for temporomandibular disorders: a pathogenetic hypothesis. Pain Res Manag. 2017;2017:5957076. doi: 10.1155/2017/5957076. Epub 2017 Aug 28. PMID: 28932132; PMCID: PMC5592418
  • Tramonti Fantozzi MP, Artoni F, Di Galante M, et al. Effect of the trigeminal nerve stimulation on auditory event-related potentials. Cerebral Cortex Communications. 2021 Feb 19;2(2):tgab012. 10.1093/texcom/tgab012. PMID: 34296158; PMCID: PMC8153017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.