422
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Blockchain and Deep Learning Integration for Various Application: A Review

&

References

  • Shrestha A, Mahmood A. Review of deep learning algorithms and architectures. IEEE Access. 2019;7:53040–65. doi:10.1109/ACCESS.2019.2912200.
  • Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8(1):1–74. doi:10.1186/s40537-021-00444-8.
  • Ayyoubzadeh SM, Ayyoubzadeh SM, Zahedi H, Ahmadi M, Kalhori SRN. Predicting COVID-19 incidence through analysis of google trends data in Iran: data mining and deep learning pilot study. JMIR Public Health Surveill. 2020;6(2):e18828. doi:10.2196/18828.
  • Ahmad RW, Salah K, Jayaraman R, Yaqoob I, Ellahham S, Omar M. The role of blockchain technology in telehealth and telemedicine. Int J Med Inform. 2021;148:104399. doi:10.1016/j.ijmedinf.2021.104399.
  • Ahmad RW, Hasan H, Yaqoob I, Salah K, Jayaraman R, Omar M. Blockchain for aerospace and defense: opportunities and open research challenges. Comput Ind Eng. 2021;151:106982. doi:10.1016/j.cie.2020.106982.
  • Sujith A, Sajja GS, Mahalakshmi V, Nuhmani S, Prasanalakshmi B. Systematic review of smart health monitoring using deep learning and artificial intelligence. Neurosci Inf. 2022;2(3):100028. doi:10.1016/j.neuri.2021.100028.
  • Maurya A, Yadav RK, Kumar M. Comparative study of human activity recognition on sensory data using machine learning and deep learning. In: Proceedings of Integrated Intelligence Enable Networks and Computing; [place unknown]: Springer, 2021. p. 63–71.
  • Ismael AM, Şengür A. Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst Appl. 2021;164:114054. doi:10.1016/j.eswa.2020.114054.
  • Afaq Y, Manocha A. Analysis on change detection techniques for remote sensing applications: a review. Ecol Inform. 2021;63:101310. doi:10.1016/j.ecoinf.2021.101310.
  • Shafay M, Hassan T, Velayudhan D, Damiani E, Werghi N. Deep fusion driven semantic segmentation for the automatic recognition of concealed contraband items. In: International Conference on Soft Computing and Pattern Recognition; [place unknown]: Springer, 2021. p. 550–59.
  • Hassan T, Shafay M, Akçay S, Khan S, Bennamoun M, Damiani E, Werghi N. Meta-transfer learning driven tensor-shot detector for the autonomous localization and recognition of concealed baggage threats. Sensors. 2020;20(22):6450. doi:10.3390/s20226450.
  • Berman DS, Buczak AL, Chavis JS, Corbett CL. A survey of deep learning methods for cyber security. Information. 2019;10(4):122. doi:10.3390/info10040122.
  • Hannah S, Deepa AJ, Chooralil VS, BrillySangeetha S, Yuvaraj N, Arshath Raja R, Suresh C, Vignesh R, Srihari K, Alene A. Blockchain-based deep learning to process IoT data acquisition in cognitive data. Biomed Res Int. 2022;2022:1–7. doi:10.1155/2022/5038851.
  • Feng C, Liu B, Yu K, Goudos SK, Wan S. Blockchain-empowered decentralized horizontal federated learning for 5G-enabled UAVs. IEEE Trans Industr Inform. 2021;18(5):3582–92. doi:10.1109/TII.2021.3116132.
  • Yadav J, Misra M, Goundar S. Autonomous agriculture marketing information system through blockchain: a case study of e-NAM adoption in India. In: Sam Goundar, editor. Blockchain technologies, applications and cryptocurrencies: current practice and future trends. [place unknown]: World Scientific; 2021. p. 115–38.
  • Yadav J, Misra M, Singh K, Goundar S. Unmasking counterfeit readymade garments in India using blockchain technology. In: The Convergence of Artificial Intelligence and Blockchain Technologies: Challenges and Opportunities; [place unknown]: World Scientific, 2022. p. 393–410.
  • Yadav J, Misra M, Rana NP, Singh K, Goundar S. Netizens’ behavior towards a blockchain-based esports framework: a TPB and machine learning integrated approach. Int J Sports Mark Sponsorship. 2021;23(4):665–83. doi:10.1108/IJSMS-06-2021-0130.
  • Yadav J, Misra M, Goundar S. An overview of food supply chain virtualisation and granular traceability using blockchain technology. Int J Blockchains Cryptocurrencies. 2020;1(2):154–78. doi:10.1504/IJBC.2020.108997.
  • Kosba A, Miller A, Shi E, Wen Z, Papamanthou C. Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE symposium on security and privacy (SP); [place unknown]: IEEE, 2016. p. 839–58.
  • Wang S, Ouyang L, Yuan Y, Ni X, Han X, Wang F-Y. Blockchain-enabled smart contracts: architecture, applications, and future trends. IEEE Trans Syst Man Cybern Syst. 2019;49(11):2266–77. doi:10.1109/TSMC.2019.2895123.
  • Zheng Z, Xie S, Dai H-N, Chen W, Chen X, Weng J, Imran M. An overview on smart contracts: challenges, advances and platforms. Future Gener Comput Syst. 2020;105:475–91. doi:10.1016/j.future.2019.12.019.
  • Bach LM, Mihaljevic B, Zagar M. Comparative analysis of blockchain consensus algorithms. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO); [place unknown]: Ieee, 2018. p. 1545–50.
  • Akbar NA, Muneer A, ElHakim N, Fati SM. Distributed hybrid double-spending attack prevention mechanism for proof-of-work and proof-of-stake blockchain consensuses. Future Internet. 2021;13(11):285. doi:10.3390/fi13110285.
  • Nguyen CT, Hoang DT, Nguyen DN, Niyato D, Nguyen HT, Dutkiewicz E. Proof-of-stake consensus mechanisms for future blockchain networks: fundamentals, applications and opportunities. IEEE access. 2019;7:85727–45. doi:10.1109/ACCESS.2019.2925010.
  • Maselli G, Piva M, Restuccia F. HyBloSE: hybrid blockchain for secure-by-design smart environments. In: Proceedings of the 3rd Workshop on Cryptocurrencies and Blockchains for Distributed Systems; [place unknown], 2020. p. 23–28.
  • Rathore S, Pan Y, Park JH. BlockDeepNet: a blockchain-based secure deep learning for IoT network. Sustainability. 2019;11(14):3974. doi:10.3390/su11143974.
  • Xie M, Li H, Zhao Y. Blockchain financial investment based on deep learning network algorithm. J Comput Appl Math. 2020;372:112723. doi:10.1016/j.cam.2020.112723.
  • Rathore S, Park JH. A blockchain-based deep learning approach for cyber security in next generation industrial cyber-physical systems. IEEE Trans Industr Inform. 2020;17(8):5522–32. doi:10.1109/TII.2020.3040968.
  • Kumar P, Kumar R, Gupta GP, Tripathi R, Jolfaei A, Islam AKMN. A blockchain-orchestrated deep learning approach for secure data transmission in IoT-enabled healthcare system. J Parallel Distrib Comput. 2023;172:69–83. doi:10.1016/j.jpdc.2022.10.002.
  • Sarpatwar K, Vaculin R, Min H, Su G, Heath T, Ganapavarapu G, Dillenberger D. Towards enabling trusted artificial intelligence via blockchain. In: Seraphin Calo, Prof. Dr. Elisa Bertino, Prof. Dinesh Verma, editors. Policy-based autonomic data governance. [place unknown]: Springer; 2019. pp. 137–53.
  • Calo SB, Bertino E, Verma D. Policy-based autonomic data governance. [place unknown]: Springer; 2019.
  • Wang R, Luo M, Wen Y, Wang L, Kim-Kwang RC, He D. The applications of blockchain in artificial intelligence. Secur Commun Netw. 2021;2021:1–16. doi:10.1155/2021/6126247.
  • Sarker IH. Machine learning: algorithms, real-world applications and research directions. Sn Comput Sci. 2021;2(3):1–21. doi:10.1007/s42979-021-00592-x.
  • Peng P, Tian Y, Xiang T, Wang Y, Pontil M, Huang T. Joint semantic and latent attribute modelling for cross-class transfer learning. IEEE Trans Pattern Anal Mach Intell. 2017;40(7):1625–38. doi:10.1109/TPAMI.2017.2723882.
  • Lv C, Xing Y, Lu C, Liu Y, Guo H, Gao H, Cao D. Hybrid-learning-based classification and quantitative inference of driver braking intensity of an electrified vehicle. IEEE Trans Veh Technol. 2018;67(7):5718–29. doi:10.1109/TVT.2018.2808359.
  • Feurer M, Eggensperger K, Falkner S, Lindauer M, Hutter F. Practical automated machine learning for the automl challenge 2018. In: International Workshop on Automatic Machine Learning at ICML; [place unknown], 2018. p. 1189–232.
  • Vikhyath KB, Sanjana RK, Vismitha NV. Intersection of AI and blockchain technology: concerns and prospects. In: The International Conference on Deep Learning, Big Data and Blockchain; [place unknown]: Springer, 2022. p. 53–66.
  • Schluse M, Priggemeyer M, Atorf L, Rossmann J. Experimentable digital twins—streamlining simulation-based systems engineering for industry 4.0. IEEE Trans Industr Inform. 2018;14(4):1722–31. doi:10.1109/TII.2018.2804917.
  • Yaqoob I, Salah K, Uddin M, Jayaraman R, Omar M, Imran M. Blockchain for digital twins: recent advances and future research challenges. IEEE Netw. 2020;34(5):290–98. doi:10.1109/MNET.001.1900661.
  • Huang S, Wang G, Yan Y, Fang X. Blockchain-based data management for digital twin of product. J Manuf Syst. 2020;54:361–71. doi:10.1016/j.jmsy.2020.01.009.
  • Samek W, Wiegand T, Müller K-R. Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:170808296. 2017.
  • Dinh TN, Thai MT. AI and blockchain: a disruptive integration. Computer (Long Beach Calif). 2018;51(9):48–53. doi:10.1109/MC.2018.3620971.
  • Lee J, Azamfar M, Singh J. A blockchain enabled cyber-physical system architecture for industry 4.0 manufacturing systems. Manuf Lett. 2019;20:34–39. doi:10.1016/j.mfglet.2019.05.003.
  • Das A, Rad P. Opportunities and challenges in explainable artificial intelligence (xai): a survey. arXiv preprint arXiv:200611371. 2020.
  • Tjoa E, Guan C. A survey on explainable artificial intelligence (xai): toward medical xai. IEEE Trans Neural Netw Learn Syst. 2020;32(11):4793–813. doi:10.1109/TNNLS.2020.3027314.
  • Kuo T-T, Ohno-Machado L. Modelchain: decentralized privacy-preserving healthcare predictive modeling framework on private blockchain networks. arXiv preprint arXiv:180201746. 2018.
  • Merlina A. BlockML: a useful proof of work system based on machine learning tasks. In: Proceedings of the 20th International Middleware Conference Doctoral Symposium; [place unknown], 2019. p. 6–8.
  • Bravo-Marquez F, Reeves S, Ugarte M. Proof-of-learning: a blockchain consensus mechanism based on machine learning competitions. In: 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON); [place unknown]: IEEE, 2019. p. 119–24.
  • Lan Y, Liu Y, Li B, Miao C. Proof of Learning (PoLe): empowering machine learning with consensus building on blockchains. In: Proceedings of the AAAI Conference on Artificial Intelligence; Vol. 35. [place unknown], 2021. p. 16063–66.
  • Li Y, Chen C, Liu N, Huang H, Zheng Z, Yan Q. A blockchain-based decentralized federated learning framework with committee consensus. IEEE Netw. 2020;35(1):234–41. doi:10.1109/MNET.011.2000263.
  • Xiao Y, Zhang N, Lou W, Hou YT. A survey of distributed consensus protocols for blockchain networks. IEEE Commun Surv Tutorials. 2020;22(2):1432–65. doi:10.1109/COMST.2020.2969706.
  • Ferdous MS, Chowdhury MJM, Hoque MA, Colman A. Blockchain consensus algorithms: a survey. arXiv preprint arXiv:200107091. 2020.
  • Qi Y, Hossain MS, Nie J, Li X. Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future Gener Comput Syst. 2021;117:328–37. doi:10.1016/j.future.2020.12.003.
  • Kumar R, Khan AA, Kumar J, Golilarz NA, Zhang S, Ting Y, Zheng C, Wang W. Blockchain-federated-learning and deep learning models for COVID-19 detection using ct imaging. IEEE Sens J. 2021;21(14):16301–14. doi:10.1109/JSEN.2021.3076767.
  • Passerat-Palmbach J, Farnan T, McCoy M, Harris JD, Manion ST, Flannery HL, Gleim B. Blockchain-orchestrated machine learning for privacy preserving federated learning in electronic health data. In: 2020 IEEE International Conference on Blockchain (Blockchain); [place unknown]: IEEE, 2020. p. 550–55.
  • Castelló Ferrer E. The blockchain: a new framework for robotic swarm systems. In: Proceedings of the future technologies conference; [place unknown]: Springer, 2018. p. 1037–58.
  • Janson S, Merkle D, Middendorf M. A decentralization approach for swarm intelligence algorithms in networks applied to multi swarm PSO. Int J Intell Comput Cybern. 2008;1(1):25–45. doi:10.1108/17563780810857112.
  • Hassan K, Tahir F, Rehan M, Ahn CK, Chadli M. On relative-output feedback approach for group consensus of clusters of multiagent systems. IEEE Trans Cybern. 2021;PP. doi:10.1109/TCYB.2021.3092720.
  • Cui L, Qu Y, Xie G, Zeng D, Li R, Shen S, Yu S. Security and privacy-enhanced federated learning for anomaly detection in iot infrastructures. IEEE Trans Industr Inform. 2021;18(5):3492–500. doi:10.1109/TII.2021.3107783.
  • Malik N, Nanda P, He X, Liu RP. Vehicular networks with security and trust management solutions: proposed secured message exchange via blockchain technology. Wireless Networks. 2020;26(6):4207–26. doi:10.1007/s11276-020-02325-z.
  • Chen Z, Cui H, Wu E, Yu X. Dynamic asynchronous anti poisoning federated deep learning with blockchain-based reputation-aware solutions. Sensors. 2022;22(2):684. doi:10.3390/s22020684.
  • Magazzeni D, McBurney P, Nash W. Validation and verification of smart contracts: a research agenda. Comput (Long Beach Calif). 2017;50(9):50–57. doi:10.1109/MC.2017.3571045.
  • Awan S, Li F, Luo B, Liu M. Poster: a reliable and accountable privacy-preserving federated learning framework using the blockchain. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security; [place unknown], 2019. p. 2561–63.
  • Kim H, Park J, Bennis M, Kim S-L. Blockchained on-device federated learning. IEEE Commun Lett. 2019;24(6):1279–83. doi:10.1109/LCOMM.2019.2921755.
  • Philip AO, Saravanaguru RAK. Secure incident & evidence management framework (SIEMF) for internet of vehicles using deep learning and blockchain. Open Comput Sci. 2020;10(1):408–21. doi:10.1515/comp-2019-0022.
  • Liu Y, James JQ, Kang J, Niyato D, Zhang S. Privacy-preserving traffic flow prediction: a federated learning approach. IEEE Internet Things J. 2020;7(8):7751–63. doi:10.1109/JIOT.2020.2991401.
  • Marr B. Blockchain and the Internet of Things: 4 important benefits of combining these two mega trends, 28 Jan 2018. 2018. Forbes (online) September.
  • Campbell D. Combining ai and blockchain to push frontiers in healthcare. 2018. vol online http://wwwmacadamiancom/2018/03/16/combining-ai-andblockchain-in-healthcare/.
  • Abraham M, Vyshnavi AH, Srinivasan C, Namboori PK. Healthcare security using blockchain for pharmacogenomics. J Int Pharm Res. 2019;46:529–33.
  • Wang S, Sun S, Wang X, Ning Z, Rodrigues JJPC. Secure crowdsensing in 5G Internet of Vehicles: when deep reinforcement learning meets blockchain. IEEE Consum Electron Mag. 2020;10(5):72–81. doi:10.1109/MCE.2020.3048238.
  • Nguyen DC, Pathirana PN, Ding M, Seneviratne A. Secure computation offloading in blockchain based IoT networks with deep reinforcement learning. IEEE Trans Netw Sci Eng. 2021;8(4):3192–208. doi:10.1109/TNSE.2021.3106956.
  • Rosenfeld M. Analysis of hashrate-based double spending. arXiv preprint arXiv:14022009. 2014.
  • Dey S. Securing majority-attack in blockchain using machine learning and algorithmic game theory: a proof of work. In: 2018 10th computer science and electronic engineering (CEEC); [place unknown]: IEEE, 2018. p. 7–10.
  • Singh M, Aujla GS, Bali RS. A deep learning-based blockchain mechanism for secure internet of drones environment. IEEE Trans Intell Transp Syst. 2020;22(7):4404–13. doi:10.1109/TITS.2020.2997469.
  • Hassija V, Batra S, Chamola V, Anand T, Goyal P, Goyal N, Guizani M. A blockchain and deep neural networks-based secure framework for enhanced crop protection. Ad Hoc Networks. 2021;119:102537. doi:10.1016/j.adhoc.2021.102537.
  • Razzaq A, Mohsan SAH, Ghayyur SAK, Alsharif MH, Alkahtani HK, Karim FK, Mostafa SM. Blockchain-enabled decentralized secure big data of remote sensing. Electron (Basel). 2022;11(19):3164. doi:10.3390/electronics11193164.
  • Kumar R, Kumar P, Tripathi R, Gupta GP, Gadekallu TR, Srivastava G. SP2F: a secured privacy-preserving framework for smart agricultural unmanned aerial vehicles. Comput Netw. 2021;187:107819. doi:10.1016/j.comnet.2021.107819.
  • Mahmudnia D, Arashpour M, Bai Y, Feng H. Drones and blockchain integration to manage forest fires in remote regions. Drones. 2022;6(11):331. doi:10.3390/drones6110331.
  • Boulila W, Khlifi MK, Ammar A, Koubaa A, Benjdira B, Farah IR. A hybrid privacy-preserving deep learning approach for object classification in very high-resolution satellite images. Remote Sens (Basel). 2022;14(18):4631. doi:10.3390/rs14184631.
  • Ch A, Ch R, Gadamsetty S, Iwendi C, Gadekallu TR, Dhaou IB. ECDSA-based water bodies prediction from satellite images with UNet. Water (Basel). 2022;14(14):2234. doi:10.3390/w14142234.
  • Shahbazi Z, Byun Y-C, Kwak H-Y. Smart home gateway based on integration of deep reinforcement learning and blockchain framework. Processes. 2021;9(9):1593. doi:10.3390/pr9091593.
  • Kumar R, Kumar P, Aloqaily M, Aljuhani A. Deep learning-based blockchain for secure zero touch networks. IEEE Commun Mag. 2022;1–7. doi:10.1109/MCOM.001.2200294.
  • Rathore S, Park JH. A blockchain-based deep learning approach for cyber security in next generation industrial cyber-physical systems. IEEE Trans Industr Inform. 2021;17(8):5522–32. doi:10.1109/TII.2020.3040968.
  • Kumar P, Kumar R, Kumar A, Franklin AA, Garg S, Singh S. Blockchain and deep learning for secure communication in digital twin empowered industrial IoT network. IEEE Trans Netw Sci Eng. 2022;1–13. doi:10.1109/TNSE.2022.3191601.
  • Lu Y, Huang X, Zhang K, Maharjan S, Zhang Y. Blockchain empowered asynchronous federated learning for secure data sharing in Internet of Vehicles. IEEE Trans Veh Technol. 2020;69(4):4298–311. doi:10.1109/TVT.2020.2973651.
  • Sellami B, Hakiri A, ben Yahia S. Deep reinforcement learning for energy-aware task offloading in join SDN-blockchain 5G massive IoT edge network. Future Gener Comput Syst [Internet]. 2022;137:363–79. doi:10.1016/j.future.2022.07.024.
  • Wang X, Garg S, Lin H, Kaddoum G, Hu J, Hassan MM. Heterogeneous blockchain and AI-driven hierarchical trust evaluation for 5G-enabled intelligent transportation systems. IEEE Trans Intell Transp Syst. 2021;1–10. doi:10.1109/TITS.2021.3129417.
  • Kumar R, Kumar P, Tripathi R, Gupta GP, Kumar N, Hassan MM. A privacy-preserving-based secure framework using blockchain-enabled deep-learning in cooperative intelligent transport system. IEEE Trans Intell Transp Syst. 2022;23(9):16492–503. doi:10.1109/TITS.2021.3098636.
  • Lin H, Garg S, Hu J, Kaddoum G, Peng M, Hossain MS. Blockchain and deep reinforcement learning empowered spatial crowdsourcing in software-defined Internet of Vehicles. IEEE Trans Intell Transp Syst. 2021;22(6):3755–64. doi:10.1109/TITS.2020.3025247.
  • Wang S, Sun S, Wang X, Ning Z, Rodrigues JJPC. Secure crowdsensing in 5G Internet of Vehicles: when deep reinforcement learning meets blockchain. IEEE Consum Electron Mag. 2021;10(5):72–81. doi:10.1109/MCE.2020.3048238.
  • Neelakandan S, Beulah JR, Prathiba L, Murthy GLN, Irudaya Raj EF, Arulkumar N. Blockchain with deep learning-enabled secure healthcare data transmission and diagnostic model. Int J Model Simul Sci Comput. 2022;13(04):2241006. doi:10.1142/S1793962322410069.
  • Bhattacharya P, Tanwar S, Bodkhe U, Tyagi S, Kumar N. Bindaas: blockchain-based deep-learning as-a-service in healthcare 4.0 applications. IEEE Trans Netw Sci Eng. 2019;8(2):1242–55. doi:10.1109/TNSE.2019.2961932.
  • Zhang G, Zhang X, Bilal M, Dou W, Xu X, Rodrigues JJPC. Identifying fraud in medical insurance based on blockchain and deep learning. Future Gener Comput Syst. 2022;130:140–54. doi:10.1016/j.future.2021.12.006.
  • Veeramakali T, Siva R, Sivakumar B, Senthil Mahesh PC, Krishnaraj N. An intelligent Internet of Things-based secure healthcare framework using blockchain technology with an optimal deep learning model. J Supercomput. 2021;77(9):9576–96. doi:10.1007/s11227-021-03637-3.
  • Ali A, Pasha MF, Ali J, Fang OH, Masud M, Jurcut AD, Alzain MA. Deep learning based homomorphic secure search-able encryption for keyword search in blockchain healthcare system: a novel approach to cryptography. Sensors. 2022;22(2):528. doi:10.3390/s22020528.
  • Singh S, Rathore S, Alfarraj O, Tolba A, Yoon B. A framework for privacy-preservation of IoT healthcare data using federated learning and blockchain technology. Future Gener Comput Syst. 2022;129:380–88. doi:10.1016/j.future.2021.11.028.
  • Mallikarjuna B, Shrivastava G, Sharma M. Blockchain technology: a DNN token-based approach in healthcare and COVID-19 to generate extracted data. Expert Syst. 2022;39(3):e12778. doi:10.1111/exsy.12778.
  • Nguyen GN, le Viet NH, Elhoseny M, Shankar K, Gupta BB, Abd El-Latif AA. Secure blockchain enabled cyber–physical systems in healthcare using deep belief network with ResNet model. J Parallel Distrib Comput. 2021;153:150–60. doi:10.1016/j.jpdc.2021.03.011.
  • Hassija V, Gupta V, Garg S, Chamola V. Traffic jam probability estimation based on blockchain and deep neural networks. IEEE Trans Intell Transp Syst. 2020;22(7):3919–28. doi:10.1109/TITS.2020.2988040.
  • Ni F, Zhang J, Noori MN. Deep learning for data anomaly detection and data compression of a long-span suspension bridge. Comput-aided Civ Infrastruct Eng. 2020;35(7):685–700. doi:10.1111/mice.12528.
  • Khalid T, Abbasi MAK, Zuraiz M, Khan AN, Ali M, Ahmad RW, Rodrigues JJPC, Aslam M. A survey on privacy and access control schemes in fog computing. Int J Commun Syst. 2021;34(2):e4181. doi:10.1002/dac.4181.
  • Wrona K, Jarosz M. Use of blockchains for secure binding of metadata in military applications of IoT. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT); [place unknown]: IEEE, 2019. p. 213–18.
  • Benet J. Ipfs-content addressed, versioned, p2p file system. arXiv preprint arXiv:14073561. 2014.
  • Hartman JH, Murdock I, Spalink T. The Swarm scalable storage system. In: Proceedings 19th IEEE International Conference on Distributed Computing Systems (Cat No 99CB37003); [place unknown]: IEEE, 1999. p. 74–81.
  • Wu D, Ansari N. A cooperative computing strategy for blockchain-secured fog computing. IEEE Internet Things J. 2020;7(7):6603–09. doi:10.1109/JIOT.2020.2974231.
  • Islam N, Faheem Y, Din IU, Talha M, Guizani M, Khalil M. A blockchain-based fog computing framework for activity recognition as an application to e-healthcare services. Future Gener Comput Syst. 2019;100:569–78. doi:10.1016/j.future.2019.05.059.
  • Khan MZ, Khan MUG, Irshad O, Iqbal R. Deep learning and blockchain fusion for detecting driver’s behavior in smart vehicles. Internet Technol Lett. 2020;3(6):e119. doi:10.1002/itl2.119.
  • Mamoshina P, Ojomoko L, Yanovich Y, Ostrovski A, Botezatu A, Prikhodko P, Izumchenko E, Aliper A, Romantsov K, Zhebrak A. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget. 2018;9(5):5665. doi:10.18632/oncotarget.22345.
  • Sharma M, Pant S, Kumar Sharma D, Datta Gupta K, Vashishth V, Chhabra A. Enabling security for the industrial Internet of Things using deep learning, blockchain, and coalitions. Trans Emerging Telecommun Technol. 2021;32(7):e4137. doi:10.1002/ett.4137.
  • Rathore S, Park JH, Chang H. Deep learning and blockchain-empowered security framework for intelligent 5G-enabled IoT. IEEE Access. 2021;9:90075–83. doi:10.1109/ACCESS.2021.3077069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.