194
Views
5
CrossRef citations to date
0
Altmetric
Leukemia, Lymphoma and Histiocytoses

Prognostic impact of CD200 and CD56 expression in pediatric B-cell acute lymphoblastic leukemia patients

, , , &
Pages 275-285 | Received 10 Mar 2017, Accepted 01 Aug 2017, Published online: 16 Nov 2017

References

  • Alperstein W, Boren M, McNeer JL. Pediatric acute lymphoblastic leukemia: From diagnosis to prognosis. Pediatr Ann. 2015;44(7):e168–174.
  • Shalaby HR, Ashaat AN, Elwahab AN, El Wakeel AM. Bcl-2 expressions and chromosomal abnormalities in childhood acute lymphoblastic leukemia. Acad J cancer Res. 2010;3(2):34–43.
  • McCaughan GW, Clark MJ, Hurst J, Grosveld F, Barclay AN. The gene for MRC OX-2 membrane glycoprotein is localized on human chromosome 3. Immunogenetics. 1987;25(2):133–135.
  • Wright GJ, Jones M, Puklavec MJ, Brown MH, Barclay AN. The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology. 2001;102(2):173–179.
  • Walker DG, Lue LF. Understanding the neurobiology of CD200 and the CD200 receptor: a therapeutic target for controlling inflammation in human brains? Future Neuro. 2013;8(3). doi:10.2217/fnl.13.14.
  • Gorczynski RM, Chen Z, Hu J, Kai Y, Lei J. Evidence of a role for CD200 in regulation of immune rejection of leukaemic tumour cells in C57 BL/6 mice. Clin Exp Immunol. 2001;126(2):220–229.
  • Gorczynski RM, Chen Z, Lee L, Yu K, Hu J. Anti-CD200R ameliorates collagen-induced arthritis in mice. Clin Immunol. 2002;104(3):256–264.
  • Coles SJ, Wang EC, Man S et al. CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia. 2011;25(5):792–799.
  • Farag SS, VanDeusen JB, Fehniger TA, Caligiuri MA. Biology and clinical impact of human natural killer cells. Int J Hematol. 2003;78(1):7–17.
  • Shibuya A, Nagayoshi K, Nakamura K, Nakauchi H. Lymphokine requirement for the generation of natural killer cells from CD34+ hematopoietic progenitor cells. Blood. 1995;85(12):3538–3546.
  • Ravandi F, Cortes J, Estrov Z, Thomas D, Giles FJ, Huh Y. et al. CD56 expression predicts occurrence of CNS disease in acute lymphoblastic leukemia. Leuk Res. 2002a;26(7):643–649.
  • Hu W, Wang X, Yang R et al. Expression of CD56 is a risk factor for acute lymphocytic leukemia with central nervous system involvement in adults. Hematology. 2017;22(2)81–87.
  • The Berlin –Frankfurt-Munster (BFM) All protocol. http://www.who.int/selection_medicines/committes/subcommitte/2/cyttoxic_review.
  • Akkaya B, Miozzo P, Holstein AH, Shevach EM, Pierce SK, Akkaya M. A simple, versatile antibody-based barcoding method for flow cytometry. J Immunol. 2016;197(5):2027–2038.
  • Alapat D, Coviello-Malle MJ, Owens R et al. Diagnostic usefulness and prognostic impact of CD200 expression in lymphoid malignancies and plasma cell myeloma. Am J Clin Pathol. 2012;137(1):93–100.
  • Adnan Awad S, Kamel MM, Ayoub MA, Kamel AM, Elnoshokaty EH, El Hifnawi N. Immunophenotypic characterization of cytogenetic subgroups in egyptian pediatric patients with B-Cell acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2016;16(Suppl)S19-S24 e11.
  • Tembhare PR, Ghogale S, Ghatwai N et al. Evaluation of new markers for minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia: CD73 and CD86 are the most relevant new markers to increase the efficacy of MRD Cytometry B Clin Cytom. 2016. doi:10.1002/cyto.b.21486.
  • Aref S, Azmy E, El-Gilany AH. Upregulation of CD200 is associated with regulatory T cell expansion and disease progression in multiple myeloma. Hematol Oncol. 2017;35(1):51–57. doi:10.1002/hon.2206.
  • Shannon S, Garcia A, Tan X, Greenberg P. Expression of a CD200-targeted chimeric costimulatory receptor enhances T cell effector function and adoptive immunotherapy of disseminated leukemia. The Journal of Immunology. 2016;196:213–218.
  • Xiong Z, Ampudia-Mesias E, Shaver R, Horbinski CM, Moertel CL, Olin MR. Tumor-derived vaccines containing CD200 inhibit immune activation: Implications for immunotherapy. Immunotherapy. 2016;8(9):1059–1071.
  • Rygiel TP, Karnam G, Goverse G et al. CD200-CD200R signaling suppresses anti-tumor responses independently of CD200 expression on the tumor. Oncogene. 2012;31(24):2979–2988.
  • Bryceson YT, March ME, Ljunggren HG, Long EO. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood. 2006;107(1):159–166.
  • Hashimoto S, Toba K, Aoki S et al. Acute T-lymphoblastic leukemia relapsed with the character of myeloid/natural killer cell precursor phenotype: a case report. Leukemia Research. 2002;26(2):215–219.
  • Ravandi F, Cortes J, Estrov Z et al. CD56 expression predicts occurrence of CNS disease in acute lymphoblastic leukemia. Leukemia Research. 2002b;26(7):643–649.
  • Seegmiller AC, Kroft SH, Karandikar NJ, McKenna RW. Characterization of immunophenotypic aberrancies in 200 cases of B acute lymphoblastic leukemia. Am J Clin Pathol. 2009;132(6), 940–949.
  • Hussein S, Gill Z, Sireci AN et al. Aberrant T-cell antigen expression in B lymphoblastic leukaemia. Br J Haematol. 2011;155(4),449–456.
  • Fischer L, Gokbuget N, Schwartz S et al. CD56 expression in T-cell acute lymphoblastic leukemia is associated with non-thymic phenotype and resistance to induction therapy but no inferior survival after risk-adapted therapy. Haematol-Hematol J. 2009;94(2):224–229.
  • Suzuki R, Murata M, Kami M et al. Prognostic significance of CD7(+)CD56(+) phenotype and chromosome 5 abnormalities for acute myeloid leukemia M0. Int J Hematol. 2003;77(5):482–489.
  • Dalmazzo LF, Jacomo RH, Marinato AF et al. The presence of CD56/CD16 in T-cell acute lymphoblastic leukaemia correlates with the expression of cytotoxic molecules and is associated with worse response to treatment. Br J Haematol. 2009;144(2):223–229.
  • Zocchi E, Franco L, Guida L et al. protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993;196(3):1459–1465.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.