210
Views
5
CrossRef citations to date
0
Altmetric
Articles

Bone marrow recovery of hematopoietic stem cells and microenvironment after chemotherapy in childhood acute lymphoblastic leukemia: consecutive observations according to chemotherapy schedule

, , , , , & show all
Pages 222-235 | Received 11 Mar 2019, Accepted 19 May 2019, Published online: 17 Jul 2019

References

  • Stier S, Ko Y, Forkert R, et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med. 2005;201(11):1781–1791. doi:10.1084/jem.20041992.
  • Scadden DT. The stem cell niche in health and leukemic disease. Best Pract Res Clin Haematol. 2007;20(1):19–27. doi:10.1016/j.beha.2006.11.001.
  • Arai F, Yoshihara H, Hosokawa K, et al. Niche regulation of hematopoietic stem cells in the endosteum. The role of thrombopoietic/Mpl signaling in the maintenance of quiescent hemtopoietic stem cells. Ann N Y Acad Sci. 2009;1176:36–46. doi:10.1111/j.1749-6632.2009.04561.x.
  • Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol. 2008;8(4):290–301. doi:10.1038/nri2279.
  • Adams GB, Chabner KT, Alley IR, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 2006;439(7076):599–603. doi:10.1038/nature04247.
  • Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005;121(7):1109–1121. doi:10.1016/j.cell.2005.05.026.
  • Lane SW, Scadden DT, Gilliland DG. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 2009;114(6):1150–1157. doi:10.1182/blood-2009-01-202606.
  • Nilsson SK, Johnston HM, Whitty GA, et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 2005;106(4):1232–1239. doi:10.1182/blood-2004-11-4422.
  • Ishigaki R, Takagi M, Igarashi M, Ito K. Gene expression and immunohistochemical localization of osteonectin in association with early bone formation in the developing mandible. Histochem J. 2002;34(1–2):57–66.
  • Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer . Clin Cancer Res. 2010;16(11):2927–2931. doi:10.1158/1078-0432.CCR-09-2329.
  • Auiti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med. 1997;185:111–120. doi:10.1084/jem.185.1.111.
  • Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997;90(12):5002–5012.
  • Summers YJ, Heyworth CM, de Wynter EA, Hart CA, Chang J, Testa NG. AC133+ G0 cells from cord blood show a high incidence of long-term culture-initiating cells and a capacity for more than 100 million-fold amplification of colony-forming cells in vitro. Stem Cells.2004;22(5):704–715. doi:10.1634/stemcells.22-5-704.
  • Cascavilla N, Musto P, D’Arena G, et al. CD117 (c-kit) is a restricted antigen of acute myeloid leukemia and characterizes early differentiative levels of M5 FAB subtype. Haematologica 1998;83(5):392–397.
  • Georgiou KR, Foster BK, Xian CJ. Damage and recovery of the bone marrow microenvironment induced by cancer chemotherapy-potential regulatory role of chemokine CXCL12/receptor CXCR4 signalling. Curr Mol Med. 2010;10(5):440–453. doi:10.2174/156652410791608243.
  • Shafat MS, Gnaneswaran B, Bowles KM, Rushworth SA. The bone marrow microenvironment - Home of the leukemic blasts. Blood Rev. 2017;31(5):277–286. doi:10.1016/j.blre.2017.03.004.
  • Chiarini F, Lonetti A, Evangelisti C, et al. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim Biophys Acta. 2016;1863(3):449–463. doi:10.1016/j.bbamcr.2015.08.015.
  • Koh KN, Park M, Kim BE, et al. Prognostic significance of minimal residual disease detected by a simplified flow cytometric assay during remission induction chemotherapy in children with acute lymphoblastic leukemia. Korean J Pediatr. 2010;53(11):957–964. doi:10.3345/kjp.2010.53.11.957.
  • Cazzaniga G, Valsecchi MG, Gaipa G, Conter V, Biondi A. Defining the correct role of minimal residual disease tests in the management of acute lymphoblastic leukaemia. Br J Haematol. 2011;155(1):45–52. doi:10.1111/j.1365-2141.2011.08795.x.
  • Schabath R, Ratei R, Ludwig WD. The prognostic significance of antigen expression in leukaemia. Best Pract Res Clin Haematol. 2003;16(4):613–628. doi:10.1016/S1521-6926(03)00087-2.
  • Lahjouji A, Bachir F, Bennani S, Benchekroun S, E SA. Clinical importance of myeloid antigen expression in Moroccan patients with adult B-lineage acute lymphoblastic leukemia. Neoplasma 2013;60(05):553–560. doi:10.4149/neo_2013_072.
  • Kurec AS, Belair P, Stefanu C, Barrett DM, Dubowy RL, Davey FR. Significance of aberrant immunophenotypes in childhood acute lymphoid leukemia. Cancer 1991;67(12):3081–3086.
  • Wiersma SR, Ortega J, Sobel E, Weinberg KI. Clinical importance of myeloid-antigen expression in acute lymphoblastic leukemia of childhood. N Engl J Med. 1991;324(12):800–808. doi:10.1056/NEJM199103213241204.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.