246
Views
0
CrossRef citations to date
0
Altmetric
Articles

Whole genome sequencing and inheritance-based variant filtering as a tool for unraveling missing heritability in pediatric cancer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 326-340 | Received 23 May 2022, Accepted 06 Jul 2022, Published online: 25 Jul 2022

References

  • Zhang J, Walsh MF, Wu G, et al. Germline Mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–2346. doi:10.1056/NEJMoa1508054.
  • Brodeur GM, Nichols KE, Plon SE, Schiffman JD, Malkin D. Pediatric cancer predisposition and surveillance: an overview, and a tribute to Alfred G. Knudson Jr. Clin Cancer Res. 2017;23(11):e1–e5. doi:10.1158/1078-0432.CCR-17-0702.
  • Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505(7483):302–308. doi:10.1038/nature12981.
  • Rotunno M, Barajas R, Clyne M, et al. A systematic literature review of whole exome and genome sequencing population studies of genetic susceptibility to cancer. Cancer Epidemiol Biomarkers Prev. 2020;29(8):1519–1534. doi:10.1158/1055-9965.EPI-19-1551.
  • Byrjalsen A, Hansen TVO, Stoltze UK, et al. Nationwide germline whole genome sequencing of 198 consecutive pediatric cancer patients reveals a high incidence of cancer prone syndromes. PLoS Genet. 2020;16(12):e1009231. doi:10.1371/journal.pgen.1009231.
  • Wagener R, Taeubner J, Walter C, et al. Comprehensive germline-genomic and clinical profiling in 160 unselected children and adolescents with cancer. Eur J Hum Genet. 2021;29(8):1301–1311. doi:10.1038/s41431-021-00878-x.
  • Zhang L, Jin Y, Zheng K, et al. Whole-genome sequencing identifies a novel variation of WAS gene coordinating with heterozygous germline mutation of APC to enhance hepatoblastoma oncogenesis. Front Genet. 2018;9:668. doi:10.3389/fgene.2018.00668.
  • Srivastava A, Giangiobbe S, Skopelitou D, et al. Whole genome sequencing prioritizes CHEK2, EWSR1, and TIAM1 as possible predisposition genes for familial non-medullary thyroid cancer. Front Endocrinol. 2021;12:600682. doi:10.3389/fendo.2021.600682.
  • Fewings E, Larionov A, Redman J, et al. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study. Lancet Gastroenterol Hepatol. 2018;3(7):489–498. doi:10.1016/S2468-1253(18)30079-7.
  • Jongmans MCJ, Loeffen JLCM, Waanders E, et al. Recognition of genetic predisposition in pediatric cancer patients: an easy-to-use selection tool. Eur J Med Genet. 2016;59(3):116–125. doi:10.1016/j.ejmg.2016.01.008.
  • Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11.10.1–11.10.33. doi:10.1002/0471250953.bi1110s43.
  • McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect predictor. Genome Biol. 2016;17(1):122. doi:10.1186/s13059-016-0974-4.
  • Karczewski KJ, Weisburd B, Thomas B, The Exome Aggregation Consortium, et al. The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res. 2017;45(D1):D840–D845. doi:10.1093/nar/gkw971.
  • Brooks A, Durbin LD, RM, Auton 1000 Genomes Project Consortium, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi:10.1038/nature15393.
  • Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–315. doi:10.1038/ng.2892.
  • Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Sidow A, NISC Comparative Sequencing Program. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15(7):901–913. doi:10.1101/gr.3577405.
  • Siepel A, Bejerano G, Pedersen JS, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15(8):1034–1050. doi:10.1101/gr.3715005.
  • Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20(1):110–121. doi:10.1101/gr.097857.109.
  • Liu X, Li C, Mou C, Dong Y, Tu Y. dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med. 2020;12(1):103. doi:10.1186/s13073-020-00803-9.
  • Oscanoa J, Sivapalan L, Gadaleta E, Dayem Ullah AZ, Lemoine NR, Chelala C. SNPnexus: a web server for functional annotation of human genome sequence variation (2020 update). Nucleic Acids Res. 2020;48(W1):W185–W192. doi:10.1093/nar/gkaa420.
  • Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(Database issue):D930–934. doi:10.1093/nar/gkr917.
  • Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22(9):1790–1797. doi:10.1101/gr.137323.112.
  • Zerbino DR, Wilder SP, Johnson N, Juettemann T, Flicek PR. The ensembl regulatory build. Genome Biol. 2015;16:56. doi:10.1186/s13059-015-0621-5.
  • Coppieters F, Verniers K, De Leeneer K, Vandesompele J, Lefever S. Targeted resequencing and variant validation using pxlence PCR assays. Biomol Detect Quantif. 2016;6:22–26. doi:10.1016/j.bdq.2015.09.001.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–2729. doi:10.1093/molbev/mst197.
  • Anderson KC, Jamison DS, Peters WP, Li FP. Familial Burkitt’s lymphoma. Association with altered lymphocyte subsets in family members. Am J Med. 1986;81(1):158–162. doi:10.1016/0002-9343(86)90202-0.
  • Joncas JH, Rioux E, Wastiaux JP, Leyritz M, Robillard L, Menezes J. Nasopharyngeal carcinoma and Burkitt’s lymphoma in a Canadian family. I. HLA typing, EBV antibodies and serum immunoglobulins. Can Med Assoc J. 1976;115(9):858–860.
  • Brown TM, Heath CW. Time-space clustering among cases of Burkitt’s tumor. Cancer Res. 1974;34(5):1216–1218.
  • Salawu L, Fatusi OA, Kemi-Rotimi F, Adeodu OO, Durosinmi MA. Familial Burkitt’s lymphoma in Nigerians. Ann Trop Paediatr. 1997;17(4):375–379. doi:10.1080/02724936.1997.11747913.
  • Hopman S, Merks J, Eussen H, et al. Structural genome variations in individuals with childhood cancer and tumour predisposition syndromes. Eur J Cancer. 2013;49(9):2170–2178. doi:10.1016/j.ejca.2013.02.002.
  • Okabe M, Morishita T, Yasuda T, et al. Targeted deep next generation sequencing identifies potential somatic and germline variants for predisposition to familial Burkitt lymphoma. Eur J Haematol. 2021;107(1):166–169. doi:10.1111/ejh.13629.
  • Winnett A, Thomas SJ, Brabin BJ, Bain C, Alpers MA, Moss DJ. Familial Burkitt’s lymphoma in Papua New Guinea. Br J Cancer. 1997;75(5):757–761. doi:10.1038/bjc.1997.134.
  • Saburi S, Hester I, Fischer E, et al. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat Genet. 2008;40(8):1010–1015. doi:10.1038/ng.179.
  • Blair S, McNeill H. Big roles for Fat cadherins. Curr Opin Cell Biol. 2018;51:73–80. doi:10.1016/j.ceb.2017.11.006.
  • Cai J, Feng D, Hu L, et al. FAT4 functions as a tumour suppressor in gastric cancer by modulating Wnt/β-catenin signalling. Br J Cancer. 2015;113(12):1720–1729. doi:10.1038/bjc.2015.367.
  • Martínez-Jiménez F, Muiños F, Sentís I, et al. A compendium of mutational cancer driver genes. Nat Rev Cancer. 2020;20(10):555–572. doi:10.1038/s41568-020-0290-x.
  • Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1):D941–D947. doi:10.1093/nar/gky1015.
  • Knapke S, Nagarajan R, Correll J, Kent D, Burns K. Hereditary cancer risk assessment in a pediatric oncology follow-up clinic. Pediatr Blood Cancer. 2012;58(1):85–89. doi:10.1002/pbc.23283.
  • Goudie C, Witkowski L, Cullinan N, et al. Performance of the McGill Interactive Pediatric OncoGenetic Guidelines for identifying cancer predisposition syndromes. JAMA Oncol. 2021;7(12):1806–1814. doi:10.1001/jamaoncol.2021.4536.
  • Diets IJ, Waanders E, Ligtenberg MJ, et al. High yield of pathogenic germline mutations causative or likely causative of the cancer phenotype in selected children with cancer. Clin Cancer Res. 2018;24(7):1594–1603. doi:10.1158/1078-0432.CCR-17-1725.
  • Shen X, Song S, Li C, Zhang J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 2022;606(7915):725–731. doi:10.1038/s41586-022-04823-w.
  • Van Hateren NJ, Das RM, Hautbergue GM, Borycki AG, Placzek M, Wilson SA. FatJ acts via the Hippo mediator Yap1 to restrict the size of neural progenitor cell pools. Development. 2011;138(10):1893–1902. doi:10.1242/dev.064204.
  • Mao Y, Mulvaney J, Zakaria S, et al. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development. 2011;138(5):947–957. doi:10.1242/dev.057166.
  • Ishiuchi T, Misaki K, Yonemura S, Takeichi M, Tanoue T. Mammalian fat and dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex. J Cell Biol. 2009;185(6):959–967. doi:10.1083/jcb.200811030.
  • Behjati S, Gilbertson RJ, Pfister SM. Maturation block in childhood cancer. Cancer Discov. 2021;11(3):542–544. doi:10.1158/2159-8290.CD-20-0926.
  • Bagherie-Lachidan M, Reginensi A, Pan Q, et al. Stromal Fat4 acts non-autonomously with Dchs1/2 to restrict the nephron progenitor pool. Development. 2015;142(15):2564–2573. doi:10.1242/dev.122648.
  • Betterman KL, Sutton DL, Secker GA, et al. Atypical cadherin FAT4 orchestrates lymphatic endothelial cell polarity in response to flow. J Clin Invest. 2020;130(6):3315–3328. doi:10.1172/JCI99027.
  • Pujol F, Hodgson T, Martinez-Corral I, et al. Dachsous1-Fat4 signaling controls endothelial cell polarization during lymphatic valve morphogenesis-brief report. Arterioscler Thromb Vasc Biol. 2017;37(9):1732–1735. doi:10.1161/ATVBAHA.117.309818.
  • Qi C, Zhu YT, Hu L, Zhu YJ. Identification of Fat4 as a candidate tumor suppressor gene in breast cancers. Int J Cancer. 2009;124(4):793–798. doi:10.1002/ijc.23775.
  • Zang ZJ, Cutcutache I, Poon SL, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 2012;44(5):570–574. doi:10.1038/ng.2246.
  • Huh HD, Kim DH, Jeong HS, Park HW. Regulation of TEAD transcription factors in cancer biology. Cells. 2019;8(6):600. doi:10.3390/cells8060600.
  • Malgundkar SH, Burney I, Al Moundhri M, et al. FAT4 silencing promotes epithelial-to-mesenchymal transition and invasion via regulation of YAP and β-catenin activity in ovarian cancer. BMC Cancer. 2020;20(1):374. doi:10.1186/s12885-020-06900-7.
  • Ma L, Cui J, Xi H, Bian S, Wei B, Chen L. Fat4 suppression induces Yap translocation accounting for the promoted proliferation and migration of gastric cancer cells. Cancer Biol Ther. 2016;17(1):36–47. doi:10.1080/15384047.2015.1108488.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.