167
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Substrate oxidation during exercise in childhood acute lymphoblastic leukemia survivors

ORCID Icon, ORCID Icon, , , , , , , , & show all
Pages 701-718 | Received 06 Dec 2022, Accepted 21 Jun 2023, Published online: 13 Jul 2023

References

  • Maunder E, Plews DJ, Kilding AE. Contextualising maximal fat oxidation during exercise: determinants and normative values. Front Physiol. 2018;9:599. doi:10.3389/fphys.2018.00599.
  • Purdom T, Kravitz L, Dokladny K, Mermier C. Understanding the factors that effect maximal fat oxidation. J Int Soc Sports Nutr. 2018;15:3.
  • Lambert K, Aguer C, Kitzmann M, et al. Whole-body lipid oxidation during exercise is correlated to insulin sensitivity and mitochondrial function in middle-aged obese men. Austin Diabetes Res. 2017;2(1):1013.
  • Robinson SL, Hattersley J, Frost GS, Chambers ES, Wallis GA. Maximal fat oxidation during exercise is positively associated with 24-hour fat oxidation and insulin sensitivity in young, healthy men. J Appl Physiol (1985). 2015;118(11):1415–1422. doi:10.1152/japplphysiol.00058.2015.
  • Kizilocak H, Okcu F. Late effects of therapy in childhood acute lymphoblastic leukemia survivors. Turk J Haematol. 2019;36(1):1–11. doi:10.4274/tjh.galenos.2018.2018.0150.
  • Lemay V, Caru M, Samoilenko M, et al. Prevention of long-term adverse health outcomes with cardiorespiratory fitness and physical activity in childhood acute lymphoblastic leukemia survivors. J Pediatr Hematol Oncol. 2019;41(7):e450–e458. doi:10.1097/MPH.0000000000001426.
  • Levy E, Samoilenko M, Morel S, et al. Cardiometabolic risk factors in childhood, adolescent and young adult survivors of acute lymphoblastic leukemia—A PETALE cohort. Sci Rep. 2017;7(1):17684. doi:10.1038/s41598-017-17716-0.
  • Nottage KA, Ness KK, Li C, Srivastava D, Robison LL, Hudson MM. Metabolic syndrome and cardiovascular risk among long-term survivors of acute lymphoblastic leukaemia—From the St. Jude Lifetime Cohort. Br J Haematol. 2014;165(3):364–374. doi:10.1111/bjh.12754.
  • Chueh HW, Yoo JH. Metabolic syndrome induced by anticancer treatment in childhood cancer survivors. Ann Pediatr Endocrinol Metab. 2017;22(2):82–89. doi:10.6065/apem.2017.22.2.82.
  • Bhakta N, Liu Q, Ness KK, et al. The cumulative burden of surviving childhood cancer: an initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet. 2017;390(10112):2569–2582. doi:10.1016/S0140-6736(17)31610-0.
  • Armstrong GT, Kawashima T, Leisenring W, et al. Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. J Clin Oncol. 2014;32(12):1218–1227. doi:10.1200/JCO.2013.51.1055.
  • Caru M, Samoilenko M, Drouin S, et al. Childhood acute lymphoblastic leukemia survivors have a substantially lower cardiorespiratory fitness level than healthy Canadians despite a clinically equivalent level of physical activity. J Adolesc Young Adult Oncol. 2019;8(6):674–683.
  • Tonorezos ES, Snell PG, Moskowitz CS, et al. Reduced cardiorespiratory fitness in adult survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2013;60(8):1358–1364. doi:10.1002/pbc.24492.
  • Ness KK, Plana JC, Joshi VM, et al. Exercise intolerance, mortality, and organ system impairment in adult survivors of childhood cancer. J Clin Oncol. 2020;38(1):29–42. doi:10.1200/JCO.19.01661.
  • Pegon C, Rochette E, Rouel N, et al. Childhood leukemia survivors and metabolic response to exercise: A pilot controlled study. J Clin Med. 2020;9(2):562
  • Silverman LB, Stevenson KE, O’Brien JE, et al. Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985–2000). Leukemia. 2010;24(2):320–334. doi:10.1038/leu.2009.253.
  • Marcoux S, Drouin S, Laverdiere C, et al. The PETALE study: late adverse effects and biomarkers in childhood acute lymphoblastic leukemia survivors. Pediatr Blood Cancer. 2017;64(6):e26361. doi:10.1002/pbc.26361.
  • de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660–667. doi:10.2471/blt.07.043497.
  • Alberti KG, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group The metabolic syndrome—a new worldwide definition. Lancet. 2005;366(9491):1059–1062. doi:10.1016/S0140-6736(05)67402-8.
  • Katzmarzyk PT. Waist circumference percentiles for Canadian youth 11–18 y of age. Eur J Clin Nutr. 2004;58(7):1011–1015. doi:10.1038/sj.ejcn.1601924.
  • World Health Organization. Physical Status: The Use and Interpretation of Anthropometry: Report of a WHO Expert Committee. Geneva, Switzerland: World Health Organization; 1995.
  • Ogden CL, Li Y, Freedman DS, Borrud LG, Flegal KM. Smoothed percentage body fat percentiles for U.S. children and adolescents, 1999–2004. Natl Health Stat Rep. 2011;(43):1–7.
  • Genest J, McPherson R, Frohlich J, et al. 2009 Canadian Cardiovascular Society/Canadian guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult—2009 recommendations. Can J Cardiol. 2009;25(10):567–579. doi:10.1016/s0828-282x(09)70715-9.
  • Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl 5):S213–S256.
  • Chen J, Wildman RP, Hamm LL, et al. Association between inflammation and insulin resistance in U.S. nondiabetic adults: results from the Third National Health and Nutrition Examination Survey. Diabetes Care. 2004;27(12):2960–2965. doi:10.2337/diacare.27.12.2960.
  • Allard P, Delvin EE, Paradis G, et al. Distribution of fasting plasma insulin, free fatty acids, and glucose concentrations and of homeostasis model assessment of insulin resistance in a representative sample of Quebec children and adolescents. Clin Chem. 2003;49(4):644–649. doi:10.1373/49.4.644.
  • Health Canada. Eating Well with Canada’s Food Guide. Ottawa, ON: Health Canada; 2007.
  • Bar-Or O, Rowland TW. Pediatric Exercise Medicine: From Physiologic Principles to Health Care Application. Champaign, IL: Human Kinetics; 2004.
  • Caru M, Laverdière C, Lemay V, et al. Maximal cardiopulmonary exercise testing in childhood acute lymphoblastic leukemia survivors exposed to chemotherapy. Support Care Cancer. 2021;29(2):987–996. doi:10.1007/s00520-020-05582-y.
  • Guazzi M, Adams V, Conraads V, et al. EACPR/AHA scientific statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2012;126(18):2261–2274. doi:10.1161/CIR.0b013e31826fb946.
  • Amann M, Subudhi AW, Walker J, Eisenman P, Shultz B, Foster C. An evaluation of the predictive validity and reliability of ventilatory threshold. Med Sci Sports Exerc. 2004;36(10):1716–1722. doi:10.1249/01.mss.0000142305.18543.34.
  • Péronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update. Can J Sport Sci. 1991;16(1):23–29.
  • Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26(Suppl 1):S28–S37. doi:10.1055/s-2004-830512.
  • Romijn JA, Coyle EF, Hibbert J, Wolfe RR. Comparison of indirect calorimetry and a new breath 13C/12C ratio method during strenuous exercise. Am J Physiol. 1992;263(1 Pt 1):E64–E71. doi:10.1152/ajpendo.1992.263.1.E64.
  • Wagenmakers AJ. Protein and amino acid metabolism in human muscle. Adv Exp Med Biol. 1998;441:307–319. doi:10.1007/978-1-4899-1928-1_28.
  • Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol (1985). 1994;76(6):2253–2261. doi:10.1152/jappl.1994.76.6.2253.
  • Taylor HL, Jacobs DR, Jr., Schucker B, Knudsen J, Leon AS, Debacker G. A questionnaire for the assessment of leisure time physical activities. J Chronic Dis. 1978;31(12):741–755. doi:10.1016/0021-9681(78)90058-9.
  • Kriska AM, Caspersen CJ. Introduction to a collection of physical activity questionnaires. Med Sci Sports Exerc. 1997;29(Suppl):5–9. doi:10.1097/00005768-199706001-00003.
  • Montoye HJ. Estimation of habitual physical activity by questionnaire and interview. Am J Clin Nutr. 1971;24(9):1113–1118. doi:10.1093/ajcn/24.9.1113.
  • Ridley K, Ainsworth BE, Olds TS. Development of a compendium of energy expenditures for youth. Int J Behav Nutr Phys Act. 2008;5(45):45. doi:10.1186/1479-5868-5-45.
  • Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New York, Routledge; 1988.
  • Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.
  • Papalia H, Rochette E, Pereira B, Merlin E, Kanold J, Duché P, HERCCULE GROUP Metabolic response to exercise in childhood brain tumor survivors: A pilot controlled study. Pediatr Blood Cancer. 2020;67(2):e28053. doi:10.1002/pbc.28053.
  • Aissiou M, Périé D, Cheriet F, Dahdah NS, Laverdière C, Curnier D. Imaging of early modification in cardiomyopathy: the doxorubicin-induced model. Int J Cardiovasc Imaging. 2013;29(7):1459–1476. doi:10.1007/s10554-013-0248-0.
  • Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;324(12):808–815. doi:10.1056/NEJM199103213241205.
  • Hudson MM, Ness KK, Gurney JG, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309(22):2371–2381. doi:10.1001/jama.2013.6296.
  • Oeffinger KC, Mertens AC, Sklar CA, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355(15):1572–1582. doi:10.1056/NEJMsa060185.
  • Lipshultz SE, Lipsitz SR, Mone SM, et al. Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med. 1995;332(26):1738–1743. doi:10.1056/NEJM199506293322602.
  • Riddell MC, Jamnik VK, Iscoe KE, Timmons BW, Gledhill N. Fat oxidation rate and the exercise intensity that elicits maximal fat oxidation decreases with pubertal status in young male subjects. J Appl Physiol (1985). 2008;105(2):742–748. doi:10.1152/japplphysiol.01256.2007.
  • Sial S, Coggan AR, Carroll R, Goodwin J, Klein S. Fat and carbohydrate metabolism during exercise in elderly and young subjects. Am J Physiol. 1996;271(6 Pt 1):E983–9. doi:10.1152/ajpendo.1996.271.6.E983.
  • Achten J, Gleeson M, Jeukendrup AE. Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc. 2002;34(1):92–97. doi:10.1097/00005768-200201000-00015.
  • Valizadeh A, Khosravi A, Azmoon H. Fat oxidation rate during and after three exercise intensities in non-athlete young men. World Appl Sci J. 2011;15(9):1260.
  • Achten J, Jeukendrup AE. Optimizing fat oxidation through exercise and diet. Nutrition. 2004;20(7-8):716–727. doi:10.1016/j.nut.2004.04.005.
  • Bircher S, Knechtle B. Relationship between fat oxidation and lactate threshold in athletes and obese women and men. J Sports Sci Med. 2004;3(3):174–181.
  • Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265(3 Pt 1):E380–91. doi:10.1152/ajpendo.1993.265.3.E380.
  • Ghanassia E, Brun JF, Fedou C, Raynaud E, Mercier J. Substrate oxidation during exercise: type 2 diabetes is associated with a decrease in lipid oxidation and an earlier shift towards carbohydrate utilization. Diabetes Metab. 2006;32(6):604–610. doi:10.1016/S1262-3636(07)70315-4.
  • Brandou F, Aloulou I, Razimbaud A, Fédou C, Mercier J, Brun JF. Lower ability to oxidize lipids in adult patients with growth hormone (GH) deficiency: reversal under GH treatment. Clin Endocrinol (Oxf). 2006;65(4):423–428. doi:10.1111/j.1365-2265.2006.02578.x.
  • Nordby P, Saltin B, Helge JW. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity? Scand J Med Sci Sports. 2006;16(3):209–214. doi:10.1111/j.1600-0838.2005.00480.x.
  • Achten J, Jeukendrup AE. Maximal fat oxidation during exercise in trained men. Int J Sports Med. 2003;24(8):603–608.
  • Stisen AB, Stougaard O, Langfort J, Helge JW, Sahlin K, Madsen K. Maximal fat oxidation rates in endurance trained and untrained women. Eur J Appl Physiol. 2006;98(5):497–506. doi:10.1007/s00421-006-0290-x.
  • Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol (1985). 2005;98(1):160–167. doi:10.1152/japplphysiol.00662.2003.
  • Frandsen J, Vest SD, Larsen S, Dela F, Helge JW. Maximal fat oxidation is related to performance in an ironman triathlon. Int J Sports Med. 2017;38(13):975–982. doi:10.1055/s-0043-117178.
  • San-Millán I, Brooks GA. Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. Sports Med. 2018;48(2):467–479. doi:10.1007/s40279-017-0751-x.
  • Venables MC, Jeukendrup AE. Endurance training and obesity: effect on substrate metabolism and insulin sensitivity. Med Sci Sports Exerc. 2008;40(3):495–502. doi:10.1249/MSS.0b013e31815f256f.
  • Rosenkilde M, Nordby P, Nielsen LB, Stallknecht BM, Helge JW. Fat oxidation at rest predicts peak fat oxidation during exercise and metabolic phenotype in overweight men. Int J Obes (Lond). 2010;34(5):871–877. doi:10.1038/ijo.2010.11.
  • Montes-de-Oca-García A, Perez-Bey A, Corral-Pérez J, et al. Maximal fat oxidation capacity is associated with cardiometabolic risk factors in healthy young adults. Eur J Sport Sci. 2021;21(6):907–917. doi:10.1080/17461391.2020.1788650.
  • Amaro-Gahete FJ, Sanchez-Delgado G, Jurado-Fasoli L, Ruiz JR. Uncertain association between maximal fat oxidation during exercise and cardiometabolic risk factors in healthy sedentary adults. Eur J Sport Sci. 2021;22:926–936.
  • Lanzi S, Codecasa F, Cornacchia M, et al. Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults. PLoS One. 2014;9(2):e88707. doi:10.1371/journal.pone.0088707.
  • Mittendorfer B, Fields DA, Klein S. Excess body fat in men decreases plasma fatty acid availability and oxidation during endurance exercise. Am J Physiol Endocrinol Metab. 2004;286(3):E354–62. doi:10.1152/ajpendo.00301.2003.
  • Emerenziani GP, Ferrari D, Marocco C, et al. Relationship between individual ventilatory threshold and maximal fat oxidation (MFO) over different obesity classes in women. PLoS One. 2019;14(4):e0215307. doi:10.1371/journal.pone.0215307.
  • Tsujimoto T, Sasai H, Miyashita M, et al. Effect of weight loss on maximal fat oxidation rate in obese men. Obes Res Clin Pract. 2012;6(2):e91–e174.
  • Kanaley JA, Weatherup-Dentes MM, Alvarado CR, Whitehead G. Substrate oxidation during acute exercise and with exercise training in lean and obese women. Eur J Appl Physiol. 2001;85(1-2):68–73. doi:10.1007/s004210100404.
  • Ara I, Larsen S, Stallknecht B, et al. Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans. Int J Obes (Lond). 2011;35(1):99–108. doi:10.1038/ijo.2010.123.
  • Croci I, Byrne NM, Choquette S, et al. Whole-body substrate metabolism is associated with disease severity in patients with non-alcoholic fatty liver disease. Gut. 2013;62(11):1625–1633. doi:10.1136/gutjnl-2012-302789.
  • Pérez-Martin A, Dumortier M, Raynaud E, et al. Balance of substrate oxidation during submaximal exercise in lean and obese people. Diabetes Metab. 2001;27(4 Pt 1):466–474.
  • Purge P, Lehismets P, Jürimäe J. A new method for the measurement of maximal fat oxidation: a pilot study. Acta Kinesiol Univ Tartu. 2014;20:90
  • Takagi S, Sakamoto S, Midorikawa T, Konishi M, Katsumura T. Determination of the exercise intensity that elicits maximal fat oxidation in short-time testing. J Sports Sci. 2014;32(2):175–182. doi:10.1080/02640414.2013.815360.
  • Amaro-Gahete FJ, Sanchez-Delgado G, Jurado-Fasoli L, et al. Assessment of maximal fat oxidation during exercise: A systematic review. Scand J Med Sci Sports. 2019;29(7):910–921. doi:10.1111/sms.13424.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.