660
Views
26
CrossRef citations to date
0
Altmetric
Review Articles

Sub-microsecond X-ray crystallography: techniques, challenges, and applications for materials science

Pages 210-232 | Received 31 Jan 2014, Accepted 23 Mar 2014, Published online: 17 Apr 2014

References

  • Schwarzenbach D. The success story of crystallography. Acta Cryst A. 2011;68:57–67. doi: 10.1107/S0108767311030303
  • Watkin DJ. Chemical crystallography – science, technology or a black art. Cryst Rev. 2010;16(3): 197–230.
  • Zhang W, Oganov AR, Goncharov AF, Zhu Q, Boulfelfel SE, Lyakhov AO, Stavrou E, Somayazulu M, Prakapenka VB, Konôpková Z. Unexpected stable stoichiometries of sodium chlorides. Science. 2013;342:1502–1505. doi: 10.1126/science.1244989
  • Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A, Hunter MS, Schulz J, DePonte DP,Weierstall U, Doak RB, Maia FRNC, MartinAV, Schlichting I, Lomb L, Coppola N, Shoeman RL, Epp SW, Hartmann R, Rolles D, RudenkoA, Foucar L, Kimmel N,Weidenspointner G, Holl P, Liang M, Barthelmess M, Caleman C, Boutet S, Bogan MJ, Krzywinski J, Bostedt C, Bajt S, Gumprecht L, Rudek B, Erk B, Schmidt C, Homke A, Reich C, Pietschner D, Struder L, Hauser G, Gorke H, Ullrich J, Herrmann S, Schaller G, Schopper F, Soltau H, Kuhnel KU, Messerschmidt M, Bozek JD, Hau-Riege SP, Frank M, Hampton CY, Sierra RG, Starodub D, Williams GJ, Hajdu J, Timneanu N, Seibert MM,Andreasson J, Rocker A, Jonsson O, Svenda M, Stern S, Nass K, Andritschke R, Schroter CD, Krasniqi F, Bott M, Schmidt KE, Wang X, Grotjohann I, Holton JM, Barends TRM, Neutze R, Marchesini S, Fromme R, Schorb S, Rupp D, Adolph M, Gorkhover T, Andersson I, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Spence, JCH. Femtosecond X-ray protein nanocrystallography. Nature. 2011;470:73–77.
  • Makal A, Trzop E, Sokolow J, Kalinowski J, Benedict J, Coppens P. The development of Laue techniques for single-pulse diffraction of chemical complexes: time-resolved Laue diffraction on a binuclear rhodium metal-organic complex. Acta Cryst A. 2011;67:319–326. doi: 10.1107/S0108767311011883
  • Trincao J, Hamilton ML, Christensen J, Pearson AR. Dynamic structural science: recent developments in time-resolved spectroscopy and X-ray crystallography. Biochem Soc Trans. 2013;41:1260–1264. doi: 10.1042/BST20130125
  • Hallmann J, Grübel S, Rajkovic I, Quevedo W, Busse G, Scholz M, More R, Petri M, Techert S. First steps towards probing chemical systems and dynamics with free-electron laser radiation – case studies at the FLASH facilities. J Phys B. 2010;43:194009. doi: 10.1088/0953-4075/43/19/194009
  • Evans PG, Billinge SJL. Advances in scattering probes of materials. MRS Bull. 2010;35:495–503. doi: 10.1557/mrs2010.598
  • Bourgeois D, Weik M. Kinetic protein crystallography: a tool to watch proteins in action. Cryst Rev. 2009;15(2):87–118. doi: 10.1080/08893110802604868
  • Cornaby S, Szebenyi DME, Smilgies DM, Schuller DJ, Gillilan R, Hao Q, Bilderback DH. Feasibility of one-shot-per-crystal structure determination using Laue diffraction. Acta Cryst D. 2010;66:2–11. doi: 10.1107/S0907444909037731
  • Cruickshank DWJ, Helliwell JR, Moffat K. Multiplicity distribution of reflections in Laue diffraction. Acta Cryst A. 1987;43:656–674. doi: 10.1107/S0108767387098763
  • Ren Z, Bourgeois D, Helliwell JR, Moffat K, Srajer V, Stoddard BL. Laue crystallography: coming of age. J Synchrotron Rad. 1999;6(4):891–917. doi: 10.1107/S0909049599006366
  • Send S, Kozierowski M, Panzner T, Gorfman S, Nurdan K, Walenta AH, Pietsch U, Leitenberger W, Hartmann R, Strüder L. Energy-dispersive Laue diffraction by means of frame-store pnCCD. J Appl Cryst. 2009;42:1139–1146. doi: 10.1107/S0021889809039867
  • Send S, Abboud A, Hartmann R, Huth H, Leitenberger W, Pashniak N, Schmidt J, Strüder L, Pietsch U. Characterization of a pnCCD for applications with synchrotron radiation. Nucl Instr Meth Phys Res A. 2013;711:132–142. doi: 10.1016/j.nima.2013.01.044
  • Nugent KA. Coherent methods in the X-ray sciences. Adv Phys. 2010;59(1):1–99.
  • Kraft P, Bergamaschi A, Broennimann Ch, Dinapoli R, Eickenberry EF, Henrich B, Johnson I, Mozzanica A, Schlepütz CM, Willmott PR, Schmitt B. Performance of single-photon-counting PILATUS detector modules. J Synchrotron Rad. 2009;16:368–375. doi: 10.1107/S0909049509009911
  • Bergamaschi A, Cervellino A, Dinapoli R, Gozzo F, Henrich B, Johnson I, Kraft P, Mozzanica A, Schmitt B, Shi X. The MYTHEN detector for X-ray powder diffraction experiments at Swiss Light Source. J Synchrotron Rad. 2010;17:653–668. doi: 10.1107/S0909049510026051
  • Medjoubi K, Bucaille T, Hustasche S, Berar JF, Boudet N, Clemens JC, Delpierre P, Dinkespiler B. Detective quantum efficiency, modulation transfer function and energy resolution comparison between CdTe and silicon sensors bump-bonded to XPAD3S. J Synchrotron Rad. 2010;17:486–495. doi: 10.1107/S0909049510013257
  • Fertey P, Alle P, Wenger E, Dinkespiler B, Cambon O, Haines J, Hustasche S, Medjoubi K, Picca F, Dawiec A, Breugnon P, Delpierre P, Mazzoli C, Lecomte C. Diffraction studies under in-situ electric field using large-area hybrid pixel XPAD detector. J Appl Cryst. 2013;46:1151–1161. doi: 10.1107/S0021889813013903
  • Ponchut P, Rigal JM, Clement J, Papillon E, Homs A, Petitdemange S. MAXIPIX, a fast readout photon-counting X-ray area detector for synchrotron applications. J Inst. 2011;6:C01069. doi: 10.1088/1748-0221/6/01/C01069
  • Johnson I, Bergamaschi A, Buitenhuis J, Dinapoli R, Greiffenberg D, Henrich B, Ikonen T, Meier G, Menzel A, Mozzanica A, Radicci V, Satapathy DK, Schmitt B, Shi X. Capturing dynamics with Eiger, a fast-framing X-ray detector. J Synchrotron Rad. 2012;19:1001–1005. doi: 10.1107/S0909049512035972
  • Schubert A, Bergamaschi A, David C, Dinapoli R, Elbracht-Leong S, Gorelick S, Graafsma H, Henrich B, Johnson I, Lohmann M, Mozzanica A, Radicci V, Rassool R, Schaedler L, Schmitt B, Shi X, Sobott B. Micrometre resolution of a charge integrating microstrip detector with a single photon sensitivity. J Synchrotron Rad. 2012;19:359–365. doi: 10.1107/S090904951200235X
  • Kelly ST, Trenkle JC, Koerner LJ, Barron SC, Walker Noeel, Pouliquen O, Tate MW, Gruner SL, Dufresne EM, Weihs TP, Hufnagel TC. Fast X-ray microdiffraction techniques for studying irreversible transformations in materials. J Synchrotron Rad. 2011;18:464–474. doi: 10.1107/S0909049511002640
  • Desy photon science PETRA III machine parameters: http://photon-science.desy.de/facilities/petra_iii/machine/parameters/.
  • Gaal P, Schick D, Herzog M, Bojahr A, Shayduk R, Goldshteyn J, Navirian HA, Leitenberger W, Vrejoiu I, Khakhulin D, Wulff M, Bargheer M. Time-domain sampling of X-ray pulses using an ultrafast sample response. Appl Phys Lett. 2012;101:243106. doi: 10.1063/1.4769828
  • Ejdrup T, Lemke HT, Haldrup K, Nielsen TN, Arms DA, Walko DA, Miceli A, Landahl EC, Dufresne EM, Nielsen MM. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector. J Synchrotron Rad. 2009;16:387–390. doi: 10.1107/S0909049509004658
  • Reusch T, Schülein F, Boemer C, Osterhoff M, Beerlink A, Krenner HJ, Wixforth A, Salditt T. Standing surface acoustic waves in LiNbO3 studied by time-resolved X-ray diffraction at PETRA III. AIP Adv. 3. 2013;3:072127. doi: 10.1063/1.4816801
  • Schoenlein RW, Chattopadhyay S, Chong HHW, Glover TE, Heimann PA, Shank CV, Zholents AA, Zolotorev MS. Generation of femtosecond pulses of synchrotron radiation. Science. 2000;287: 2237–2240. doi: 10.1126/science.287.5461.2237
  • Hada M, Pichugin K, Sciaini G. Ultrafast structural dynamics with table top femtosecond hard X-ray and electron diffraction setups. Eur Phys J Special Topic. 2013;222:1093–1123. doi: 10.1140/epjst/e2013-01909-9
  • Gao Y, Chen Z, Loether A, Howard LE, LeMar S, White S, Watts A, Walker BC, DeCamp MF. Reconstructing longitudinal strain pulses using time-resolved X-ray diffraction. Phys Rev B. 2013;88:014302. doi: 10.1103/PhysRevB.88.014302
  • Rose-Petruck C, Jimenez R, Guo T, Cavalleri A, Siders CW, Raksi F, Squier JA, Walker BC, Wilson KR, Barty CPJ. Picosecond-milliangstrom dynamics measured by ultrafast X-ray diffraction. Nature. 1999;398:310–312. doi: 10.1038/18631
  • Gaffney KJ, Chapman HN. Imaging atomic structure and dynamics with ultrafast X-ray scattering. Science. 2008;316:1444–1448. doi: 10.1126/science.1135923
  • Quevedo W, Busse G, Hallmann J, More R, Petri M, Krasniqi F, Rudenko A, Tschentscher T, Stojanovic N, Düsterer S, Treusch R, Tolkiehn M, Techert S, Rajkovic I. Ultrafast time dynamics studies of periodic lattices with free electron laser radiation. J Appl Phys. 2012;112:093519. doi: 10.1063/1.4764918
  • Eckold G, Gibhardt H, Caspary D, Elter P, Elisbihani K. Stroboscopic neutron diffraction from spatially modulated systems. Z Kristallogr. 2003;218:144–153. doi: 10.1524/zkri.218.2.144.20670
  • Harrison RJ, Redfern SAT, Buckley A, Salje EKH. Application of real-time, stroboscopic X-ray diffraction with dynamical mechanical analysis to characterize the motion of ferroelastic domain walls. J Appl Phys. 2004;95:1706–1717. doi: 10.1063/1.1639949
  • Hansen NK, Fertey P, Guillot R. Studies of electric field induced structural and electron-density modifications by X-ray diffraction. Acta Cryst A. 2004;60(5):465–471. doi: 10.1107/S0108767304016897
  • Gorfman S, Tsirelson VG, Pucher A, Morgenroth W, Pietsch U. X-ray diffraction by a crystal in a permanent external electric field: electric-field-induced structural response in α-GaPO4. Acta Cryst A. 2006;62:1–10. doi: 10.1107/S0108767305036111
  • Guillot R, Alle P, Fertey P, Hansen NK, Elkaim E. Diffraction measurements from crystals under external electric field: instrumentation. J Appl Cryst. 2002;35:360–363. doi: 10.1107/S0021889802003278
  • Gorfman S, Schmidt O, Pietsch U, Becker P, Bohaty L. X-ray diffraction studies of piezoelectric properties of BiB3O6 single crystals. Z Kristallogr. 2007;222:396–401.
  • Jo JY, Chen P, Sichel RJ, Callori SJ, Sinsheimer J, Dufresne EM, Dawber M, Evans PG. Nanosecond dynamics of ferroelectric / dielectric superlattices. Phys Rev Lett. 2011;107:055501. doi: 10.1103/PhysRevLett.107.055501
  • Gorfman S, Schmidt O, Ziolkowski M, Kozierovski M, Pietsch U. Time-resolved X-ray diffraction study of the piezoelectric crystal response to a fast change of an applied electric field. J Appl Phys. 2010;108:064911. doi: 10.1063/1.3480996
  • Gorfman S, Schmidt O, Tsirelson V, Ziolkowski M, Pietsch U. Crystallography under external electric field. Z Anorg Allg Chem. 2013;639(11):1953–1962. doi: 10.1002/zaac.201200497
  • Eckold G, Schober H, Nagler SE. Studying kinetics with neutrons. Berlin: Springer; 2010.
  • Leist J, Gibhardt H, Hradil K, Eckold G. Switching behaviour of modulated ferroelectrics: the kinetics of the field-induced lock-in transition in K2SeO4. J Phys: Condens Matter. 2011;23:305901.
  • Leist J, Gibhardt H, Eckold G. Swicthing kinetics of the ferroelectric transition in K2SeO4 studied by stroboscopic γ-ray diffraction. J Phys: Condens Matter. 2013;25:465901.
  • Tutuncu G, Damjanovic D, Chen J, Jones JL. Deaging and asymmetric energy landscapes in electrically biased ferroelectrics. Phys Rev Lett. 2012;108:177601. doi: 10.1103/PhysRevLett.108.177601
  • Khomskii D. Classifying multiferroics: mechanisms and effects. Physics. 2009;2:20. doi: 10.1103/Physics.2.20
  • Spaldin NA, Cheong SW, Ramesh R. Multiferroics: past, present and future. Phys Today. 2010;63(10):38. doi: 10.1063/1.3502547
  • Trolier Mc-Kinstry S, Gharb NB, Damjanovic D. Piezolectric nonlinearity due to motion of 180° domain walls in ferroelectric materials at subcoercive field: a dynamic poling model. Appl Phys Lett. 2006;88:202901. doi: 10.1063/1.2203750
  • Damjanovic D. Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J Appl Phys. 1997;82(4):1788–1797. doi: 10.1063/1.365981
  • Taylor DV, Damjanovic D. Evidence of domain wall contribution to the dielectric permittivity in PZT thin films at sub-switching fields. J Appl Phys. 1997;82(4):1973–1975. doi: 10.1063/1.366006
  • Merz WJ. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys Rev. 1954;95(3):690–698. doi: 10.1103/PhysRev.95.690
  • Scott JF. Ferroelectrics go bananas. J Phys: Condens Matter. 2008;20:021001.
  • Ishibashi Y, Takagi Y. Note on ferroelectric domain switching. J Phys Soc Jpn. 1971;31:506. doi: 10.1143/JPSJ.31.506
  • Tagantsev AK, Stolichnov I, Setter N, Cross JS, Tsukada M. Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films. Phys Rev B. 2002;66:214109. doi: 10.1103/PhysRevB.66.214109
  • Zhukov S, Genenko YuA, von Seggern H. Experimental and theoretical investigation on polarization reversal in unfatigued lead zirconate-titanate ceramic. J Appl Phys. 2010;108:014106. doi: 10.1063/1.3380844
  • Zhukov S, Genenko YuA, Hirsch O, Glaum J, Granzow T, von Seggern H. Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism. Phys Rev B. 2010;82:014109. doi: 10.1103/PhysRevB.82.014109
  • Genenko YuA, Zhukov S, Yampolskii SV, Schuetrumpf J, Dittmer R, Jo W, Kungl H, Hoffmann MJ, von Seggern H. Universal polarization switching behavior of disordered ferroelectrics. Adv Funct Mater. 2012;2058–2066. doi: 10.1002/adfm.201102841
  • Lou XJ. Statistical switching kinetics of ferroelectrics. J Phys Cond Matt. 2009;21:012207. doi: 10.1088/0953-8984/21/1/012207
  • Lou XJ. Four switching categories of ferroelectrics. J Appl Phys. 2009;105:094112. doi: 10.1063/1.3117494
  • Genenko YuA, Wehner J, von Seggern H. Self-consistent model of polarization switching kinetics in disordered ferroelectrics. J Appl Phys. 2013;114:084101. doi: 10.1063/1.4818951
  • Kumar A, Ehara Y, Wada A, Funakubo H, Griggio F, Trolier-McKinstry S, Jesse S, Kalinin SV. Dynamic piezoresponse force microscopy: spatially resolved probing of polarization dynamics in time and voltage domains. J Appl Phys. 2012;112:052021. doi: 10.1063/1.4746080
  • Vasudevan RK, Marincel D, Jesse S, Kim Y, Kumar A, Kalinin SV, Trolier-McKinstry S. Polarization dynamics in ferroelectric capacitors: local perspective on emergent collective behaviour and memory effects. Adv Funct Mater. 2013;23:2490–2508. doi: 10.1002/adfm.201203422
  • Kim Y, Han H, Lee W, Baik S, Hesse D, Alexe M. Non-Kolmogorov–Avrami–Ishibashi switching dynamics in nanoscale ferroelectric capacitors. Nano Lett. 2010;10:1266–1270. doi: 10.1021/nl9038339
  • Winkler CR, Jablonski ML, Damodaran AR, Jambunathan K, Martin LW, Taheri ML. Accessing intermediate ferroelectric switching regimes with time-resolved transmission electron microscopy. J Appl Phys. 2012;112:052013. doi: 10.1063/1.4746082
  • Flack HD, Bernardinelli G. Reporting and evaluating absolute-structure and absolute-configuration determinations. J Appl Cryst. 2000;33:1143–1148. doi: 10.1107/S0021889800007184
  • Flack HD, Bernardinelli G. The use of X-ray crystallography to determine absolute configuration. Chirality. 2008;20(5):681–690. doi: 10.1002/chir.20473
  • Podlozhenov S, Graetsch HA, Schneider J, Ulex M, Wöhlecke M, Betzler K. Structure of strontium barium niobate SrxBa1-xNb2O6 (SBN) in the composition range 0.32<x<0.82. Acta Cryst B. 2006;62:960–965. doi: 10.1107/S0108768106038869
  • Reeuwijk SJ, Karakaya K, Graafsma H, Harkema S. Polarization switching in BaTiO3 thin films measured by X-ray diffraction, exploiting anomalous dispersion. J Appl Cryst. 2004;37:193–199. doi: 10.1107/S0021889803028395
  • Azimonte C, Granado E, Terashita H, Park S, Cheong SW. Polar atomic displacements in multiferroics observed via anomalous X-ray diffraction. Phys Rev B. 2010;81:012103. doi: 10.1103/PhysRevB.81.012103
  • Grigoriev A, Do DH, Kim DM, Eom CB, Adams B, Dufresne EM, Evans PG. Nanosecond domain wall dynamics in ferroelectric Pb(ZrTi)O3 thin films. Phys Rev Lett. 2006;96:187601. doi: 10.1103/PhysRevLett.96.187601
  • Evans PG, Sichel-Tissot RJ. In situ X-ray characterization of piezoelectric ceramics thin films. Am Ceram Soc Bull. 2013;92(1):18–23.
  • Chen L, Roytburd AL. 180° ferroelectric domains as elastic domains. Appl Phys Lett. 2007;90:102903. doi: 10.1063/1.2711408
  • Chen P, Jo JY, Lee HN, Dufresne EM, Nakhmanson SM, Evans PG. Domain- and symmetry-transition origins of reduced nanosecond piezoelectricity in ferroelectric/dielectric superlattices. New J Phys. 2012;14:013034. doi: 10.1088/1367-2630/14/1/013034
  • Howard CJ, Stokes HT. Structures and phase transitions in perovskites – a group-theoretical approach. Acta Cryst A. 2005;61:93–111. doi: 10.1107/S0108767304024493
  • Arlt G, Pertsev NA. Force constant and effective mass of 90°domain walls in ferroelectric ceramics. J Appl Phys. 1991;70(4):2283–2289. doi: 10.1063/1.349421
  • Sapriel J. Domain-wall orientations in ferroelastics. Phys Rev B. 1975;12(11):5128. doi: 10.1103/PhysRevB.12.5128
  • Schranz W. Superelastic softening in perovskites. Phys Rev B. 2011;83:094120. doi: 10.1103/PhysRevB.83.094120
  • Scott JF, Salje EKH, Carpenter MA. Domain wall damping and elastics softening in SrTiO3: evidence for polar twin walls. Phys Rev Lett. 2012;109:187601. doi: 10.1103/PhysRevLett.109.187601
  • Ding X, Lookman T, Zhao Z, Saxena A, Sun J, Salje EKH. Dynamically strained ferroelastics: Statistical behaviour in elastics and plastic regimes. Phys Rev B. 2013;87:094109.
  • Gorfman S, Thomas P. Evidence for a non-rhombohedral average structure in the lead-free ferroelectric material. J Appl Cryst. 2010;43:1409–1414. doi: 10.1107/S002188981003342X
  • Gorfman S, Keeble DS, Glazer AM, Long X, Xie Y, Ye ZG, Collins S, Thomas PA. High-resolution X-ray diffraction study of lead zirconate titanate. Phys Rev B. 2011;84(2): 020102(R). doi: 10.1103/PhysRevB.84.020102
  • Wang YuU. Diffraction theory of nanotwin superlattices with low symmetry phase: Application to rhombohedral nanotwins and monoclinic MA and MB phases. Phys Rev B. 2007;76:024108. doi: 10.1103/PhysRevB.76.024108
  • Navirian H, Enquist H, Nüske R, Jurgilaitis A, Korff Schmising CV, Sondhauss P, Larsson J. Acoustically driven ferroelastics domain switching observed by time-resolved X-ray diffraction. Phys Rev B. 2010;81:024113. doi: 10.1103/PhysRevB.81.024113
  • Zolotoyabko E, Quintana JP, Hoerman BH, Wessels BW. Fast time-resolved x-ray diffraction in BaTiO3 thin films subjected to a strong high-frequency electric field. Appl Phys Lett. 2002;80(17):3159–3161. doi: 10.1063/1.1476057
  • Daniels JE, Finlayson TR, Davis M, Damjanovic D, Studer AJ, Hoffman M, Jones JL. Neutron diffraction study of the polarization reversal mechanism in [111]c-oriented PbZn1/3Nb2/3O3-xPbTiO3. J Appl Phys. 2007;101:104108. doi: 10.1063/1.2733636
  • Noheda B, Gonzalo JA, Cross LE, Guo R, Park SE, Cox DE, Shirane G. Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys Rev B. 2000;61 (13):8687. doi: 10.1103/PhysRevB.61.8687
  • Fu HX, Cohen RE. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature. 2000;6767:281–283.
  • Guo R, Cross LE, Park SE, Noheda B, Cox DE, Shirane G. Origin of the high piezoelectric response in PbZr1−xTixO3. Phys Rev Lett. 2000;84(23):5423. doi: 10.1103/PhysRevLett.84.5423
  • Jones JL. The use of diffraction in the characterization of piezoelectric materials. J Electroceram. 2007;19:67–79. doi: 10.1007/s10832-007-9048-z
  • Pramanick A, Damjanovic D, Daniels JE, Nino JC, Jones JL. Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading. J Am Ceram Soc. 2011;94(2): 293–309. doi: 10.1111/j.1551-2916.2010.04240.x
  • Jones JL, Hoffman M, Daniels JE, Studer AJ. Direct measurement of the domain switching contribution to the dynamic piezoelectric response in ferroelectric ceramic. Appl Phys Lett. 2006;89:092901. doi: 10.1063/1.2338756
  • Daniels JE, Finlayson TR, Studer AJ, Hoffman M, Jones JL. Time-resolved diffraction measurements of electric-field-induced strain in tetragonal lead zirconate titanate. J Appl Phys. 2007;101:094104. doi: 10.1063/1.2720255
  • Pramanick A, Damjanovic D, Nino JC, Jones JL. Subcoercive cyclic electrical loading of lead zorconate titanate ceramics I: nonlinearirities and losses in the converse piezoelectric effect. J Am Ceram Soc. 2009;92(10):2291–2299. doi: 10.1111/j.1551-2916.2009.03218.x
  • Pramanick A, Daniels JE, Jones JL. Subcoercive cyclic electrical loading of lead zirconate titanate ceramics I: time-resolved X-ray diffraction. J Am Ceram Soc. 2009;92(10):2300–2310. doi: 10.1111/j.1551-2916.2009.03219.x
  • Jones JL, Aksel E, Tutuncu G, Uscher TM, Chen J, Xing X, Studer AJ. Domain wall and interphase boundary motion in a two-phase morphotropic phase boundary ferroelectric: frequency dispersion and contribution to piezoelectric and fielectric properties. Phys Rev B. 2012;86:024104. doi: 10.1103/PhysRevB.86.024104
  • Pramanick A, Prewitt AD, Cottrell MA, Lee W, Studer AJ, An K, Hubbard CR, Jones JL. In situ neutron diffraction studies of a commercial, soft lead zirconate titanate ceramic: response to electric fields and mechanical stress. Appl Phys A. 2010;99:557–564. doi: 10.1007/s00339-010-5605-4
  • Hinterstein M, Hoelzel M, Kungl H, Hoffmann MJ, Ehrenberg H, Fuess H. In situ neutron diffraction study of electric field induced structural transitions in lanthanum doped lead zirconate titanate. Z Kristallogr. 2011;226:155–162. doi: 10.1524/zkri.2011.1338
  • Hinterstein M, Rouquette J, Haines J, Papet P, Knapp M, Glaum J, Fuess H. Structural description of macrocopic piezo- and ferroelectric properties of lead zirconate titanate. Phys Rev Lett. 2011;107:077602. doi: 10.1103/PhysRevLett.107.077602
  • Seshadri SB, Prewitt AD, Studer AJ, Damjanovic D, Jones JL. An in situ study of domain wall motion contributions to the frequency dispersion of the piezoelectric coefficient in lead zirconate titanate. Appl Phys Lett. 2013;102:042911. doi: 10.1063/1.4789903
  • Ryding S, Cernik R, Wooldridge J, Burnett TL, Stewart M, Vecchini C, Cain MG, Lennie A, Yuan F, Tang C, Thompson P. Simultaneous measurement of X-ray powder diffraction and ferroelectric polarization data as a function of applied field at a range of frequencies. Powder Diffr. 2013;28(2):S220–S227. doi: 10.1017/S0885715613001024
  • Pandey CS, Schreuer J. Elastic and piezoelectric constants of tourmaline single crystals at non-ambient temperatures determined by resonance ultrasound spectroscopy. J Appl Phys. 2012;111:013516. doi: 10.1063/1.3673820
  • Maynard J. Resonant ultrasound spectroscopy. Phys Today. 1996;49(1):26. doi: 10.1063/1.881483
  • Salje EKH, Carpenter MA, Nataf GF, Picht G, Webber K, Weerasinghe J, Lisenkov S, Bellaiche L. Elastic excitations in BaTiO3 single crystals and ceramics: mobile domain boundaries and polar nanoregions observed by resonant ultrasonic spectroscopy. Phys Rev B. 2013;87:014106. doi: 10.1103/PhysRevB.87.014106
  • Aktas O, Salje EKH, Carpenter MA. Resonant ultrasound spectroscopy and resonant piezoelectric spectroscopy in ferroelastic lead phosphate, Pb3(PO4)2. J Phys Condens Matter. 2013;25:465401. doi: 10.1088/0953-8984/25/46/465401
  • Aktas O, Salje EKH, Crossley S, Lampronti GI, Whatmore RW, Mathur ND, Carpenter MA. Ferroelectric precursor behavior in PbSc0.5Ta0.5O3 detected by field-induced resonance piezoelectric microscopy. Phys Rev B. 2013;88:174112. doi: 10.1103/PhysRevB.88.174112
  • Aktas O, Carpenter MA, Salje EKH. Polar precursor ordering in BaTiO3 detected by resonant piezoelectric spectroscopy. Appl Phys Lett. 2013;103:142902. doi: 10.1063/1.4823576
  • Tsirelson VG, Gorfman S, Pietsch U. X-ray scattering amplitude of an atom in a permanent external electric field. Acta Cryst A. 2003;59:221–227. doi: 10.1107/S0108767303004689
  • Guillot R, Fertey P, Hansen NK, Alle P, Elkaim E, Lecomte C. Diffraction study of piezoelectric properties of low quartz. Eur Phys J B. 2004;42:373–380. doi: 10.1140/epjb/e2004-00393-4
  • Gorfman S, Tsirelson V, Pietsch U. X-ray diffraction by a crystal in a permanent external electric field: general considerations. Acta Cryst A. 2005;61:387–396. doi: 10.1107/S0108767305010044
  • Schmidt O, Gorfman S, Pietsch U. Electric-field-induced internal deformation in piezoelectric BiB3O6 crystals. Cryst Res Technol. 2008;43 (11):1126–1132. doi: 10.1002/crat.200800335
  • Schmidt O, Gorfman S, Bohaty L, Neumann E, Engelen B, Pietsch U. Investigations of the bond-selective response in a piezoelectric Li2SO4H2O crystal to an applied external electric field. Acta Cryst A. 2009;65:267–275. doi: 10.1107/S0108767309015566
  • Polikarpov I, Zolotoyabko E. Effect of absorption on dynamical Bragg on a crystal modulated by strong ultrasound. J Phys D. 1997;30:2591–2595. doi: 10.1088/0022-3727/30/18/014
  • Zolotoyabko E, Quintana JP. Control of synchrotron x-ray diffraction by means of standing acoustic waves. Rev Scient Inst. 2004;75(3):699–708. doi: 10.1063/1.1645652
  • Zolotoyabko E, Quintana JP. Time and phase control of x-rays in stroboscopic diffraction experiments. Rev Scient Inst. 2002;73(3):1643–1645. doi: 10.1063/1.1425386
  • Blagov AE, Kovalchuk MV, Kohn VG, Pisarevsky YuV. Dynamics variation in the lattice parameter of a crystal under ultrasonic treatment in x-ray diffraction experiments. Cryst Rep. 2006;51(5):729–733. doi: 10.1134/S1063774506050026
  • Blagov AE, Kovalchuk MV, Pisarevskii YuV, Prosekov PA. Control of the crystal lattice strain gradient caused by low frequency resonance. Cryst Rep. 2008;53:379. doi: 10.1134/S1063774508030036
  • Blagov AE, Darinskii AN, Targonskii AV, Pisarevskii YuV, Prosekov PA, Kovalchuk MV. X-ray acoustic resonators for controlling the spatial characteristics of X-radiation. Acoust Phys. 2013;59(5):506–512. doi: 10.1134/S1063771013050035
  • Whatmore RW, Goddard PA, Tanner BK, Clark GF. Direct imaging of travelling Rayleigh waves by stroboscopic X-ray topography. Nature. 1983;299:44–45. doi: 10.1038/299044a0
  • Kunz M, Tamura N, Chen K, MacDowell AA, Celestre RS, Church MM, Fakra S, Domning EE, Glossinger JM, Kirschman JL, Morrison GY, Plate DW, Smith BV, Warwick T, Yashchuk VV, Padmore HA, Ustundag E. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source. Rev Sci Instrum. 2009;80:035108. doi: 10.1063/1.3096295
  • Bokov AA, Ye ZG. Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci. 2006;41(1):31–52. doi: 10.1007/s10853-005-5915-7
  • Goosens DJ. Diffuse scattering from lead-containing ferroelectric perovskite oxides. ISRN Mater Sci. 2013;2013:107178.
  • Xu G, Zhong Z, Bing Y, Ye ZG, Shirane G. Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nature Mater. 2004;5:134–140. doi: 10.1038/nmat1560
  • Bosak A, Chernyshov D, Vakhrushev S, Krisch M. Diffuse scattering in relaxor ferroelectrics: true three-dimensional mapping, experimental artefacts and modelling. Acta Cryst A. 2011;68:117–123. doi: 10.1107/S0108767311040281
  • Hlinka J. Do we need the ether of polar nanoregions? J Adv Diel. 2012;2(2):1241006. doi: 10.1142/S2010135X12410068
  • Gehring PM. Neutron diffuse scattering in lead-based relaxor ferroelectrics and its relationship to the ultrahigh piezoelectricity. J Adv Diel. 2012;2(2):1241005. doi: 10.1142/S2010135X12410056
  • Bosak A, Chernyshov D, Vakhrushev S. Glass-like structure of lead-based relaxor ferroelectrics. J Appl Cryst. 2012;45:1309–1313. doi: 10.1107/S0021889812039015
  • Pasciak M, Heerdegen AP, Goosens DJ, Whitfield RE, Pietraszko A, Welberry T. Assessing local structure in PbZn1/3Nb2/3O3 using diffuse scattering and reverse Monte Carlo refinement. Metall Mat Trans. 2013;44A:87. doi: 10.1007/s11661-012-1475-z
  • Chernyshov D, van Beek W, Emerich H, Milanesio M, Urakawa A, Viterbo D, Palin L, Caliandro R. Kinematic diffraction on a structure with periodically varying scattering function. Acta Cryst A. 2011;67:327–335. doi: 10.1107/S0108767311010695
  • van Beek W, Emerich H, Urakawa A, Palin L, Milanesio M, Caliandro R, Viterbo D, Chernyshov D. Untangling diffraction intensity: modulation enhanced diffraction on ZrO2 powder. J Appl Cryst. 2012;45:738–747. doi: 10.1107/S0021889812018109
  • Caliandro R, Chernyshov D, Emerich H, Milanesio M, Palin L, Urakawa A, van Beek W, Viterbo D. Patterson selectivity by modulation-enhanced diffraction. J Appl Cryst. 2012;45(3):458–470. doi: 10.1107/S0021889812011569
  • König CFJ, Bokhoven JA, Schildhauer TJ, Nachtegaal M. Quantitative analysis of modulated excitation X-ray absorption spectra: enhanced precision of EXAFS fitting. J Phys Chem C. 2012;116:19857–19866. doi: 10.1021/jp306022k
  • Wooldridge J, Ryding S, Brown S, Burnett TL, Cain MG, Cernik R, Hino R, Stewart M, Thompson P. Simultaneous measurement of X-ray diffraction and ferroelectric polarization data as a function of applied electric field and frequency. J Synchrotron Rad. 2012;19:710–716. doi: 10.1107/S0909049512025782

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.