2,046
Views
81
CrossRef citations to date
0
Altmetric
Review Article

One hundred years of diffuse scattering

&
Pages 2-78 | Received 01 Feb 2015, Accepted 28 Apr 2015, Published online: 14 Jul 2015

References

  • Laue Mv. Röntgenstrahlinterferenz und Mischkristalle. Ann Phys. 1918;361(15):497–506.
  • Friedrich W, Knipping P, Laue M. Interferenzerscheinungen bei Röntgenstrahlen. Ann Phys. 1913;346(10):971–988. doi: 10.1002/andp.19133461004
  • Bragg WL. The diffraction of short electromagnetic waves by a crystal. Proc Camb Phil Soc. 1913;17:43–57.
  • Schweika W. Disordered alloys: diffuse scattering and Monte Carlo simulations. Berlin: Springer-Verlag; 1998.
  • Welberry TR, Butler BD. Diffuse X-ray scattering from disordered crystals. Chem Rev. 1995;95:2369–2403. doi: 10.1021/cr00039a005
  • Welberry TR. Diffuse X-ray scattering and models of disorder. Oxford: Oxford University Press; 2004.
  • Harburn G, Taylor CA, Welberry TR. Atlas of optical transforms. London: G. Bell; 1975.
  • Proffen T. Analysis of occupational and displacive disorder using the atomic pair distribution function: a systematic investigation. Z Kristallogr. 2000;215:661–668.
  • Wooster WA. Diffuse X-ray reflections from crystals. Oxford: Oxford University Press; 1962.
  • Neder RB, Proffen T. Diffuse scattering and defect structure simulations: a cook book using the program DISCUS. Oxford: Oxford University Press; 2008.
  • Nield VM, Keen DA. Diffuse neutron scattering from crystalline materials. Oxford: Oxford University Press; 2001.
  • Welberry TR, Goossens DJ. Diffuse scattering and partial disorder in complex structures. IUCrJ. 2014;1:550–562. doi: 10.1107/S205225251402065X
  • Young CA, Goodwin AL. Applications of pair distribution function methods to contemporary problems in materials chemistry. J Mater Chem. 2011;21:6464–6476. doi: 10.1039/c0jm04415f
  • Goodwin AL, Michel FM, Phillips BL, Keen DA, Dove MT, Reeder RJ. Nanoporous structure and medium-range order in synthetic amorphous calcium carbonate. Chem Mater. 2010;22:3197–3205. doi: 10.1021/cm100294d
  • Bennett TD, Goodwin AL, Dove MT, Keen DA, Tucker MG, Barney ER, Soper AK, Bithell EG, Tan JC, Cheetham AK. Structure and properties of an amorphous metal-organic framework. Phys Rev Lett. 2010;104: Article no. 115503.
  • Juhas P, Davis T, Farrow CL, Billinge SJL. PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J Appl Crystallogr. 2013;46:560–566. doi: 10.1107/S0021889813005190
  • Yamamoto T, Choi M-S, Majima S, Fukuda T, Kakeshita T. Origin of diffuse scattering appearing in iron-doped Ti-Ni shape memory alloys. Eur Phys J Spec Top. 2008;158:1–5. doi: 10.1140/epjst/e2008-00645-7
  • Pasciak M, Welberry TR, Kulda J, Kempa M, Hlinka J. Polar nanoregions and diffuse scattering in the relaxor ferroelectric PbMgNbO. Phys Rev B. 2012;85: Article no. 224109.
  • Izquierdo M, Megtert S, Albouy JP, Avila J, Valbuena MA, Gu G, Abell JS, Yang G, Asensio MC, Comes R. X-ray diffuse scattering experiments from bismuth-based high-T-c superconductors. Phys Rev B. 2006;74(5): Article no. 054512. doi: 10.1103/PhysRevB.74.054512
  • Izquierdo M, Megtert S, Colson D, Honkimäki V, Forget A, Raffy H, Comès R. One dimensional ordering of doping oxygen in superconductors evidenced by X-ray diffuse scattering. J Phys Chem Solids. 2011;72(5):545–548. doi: 10.1016/j.jpcs.2010.10.055
  • Welberry TR, Pasciak M. Monte Carlo and molecular dynamics simulation of disorder in the Ag+ fast ion conductors Pearceite and Polybasite. Metall Mater Trans A. 2011;42A:6–13. doi: 10.1007/s11661-010-0243-1
  • Keen DA. Disordering phenomena in superionic conductors. J Phys Condens Matter. 2002;14:R819–R857. doi: 10.1088/0953-8984/14/32/201
  • Barchuk M, Holy V, Miljevic B, Krause B, Baumbach T, Hertkorn J, Scholz F. X-ray diffuse scattering from threading dislocations in epitaxial GaN layers. J Appl Phys. 2010;108: Article no. 043521. doi: 10.1063/1.3460803
  • Chan EJ, Welberry TR, Goossens DJ, Heerdegen AP, Beasley AG, Chupas PJ. Single-crystal diffuse scattering studies on polymorphs of molecular crystals. I. The room-temperature polymorphs of the drug benzocaine. Acta Crystallogr B. 2009;65:382–392. doi: 10.1107/S0108768109015857
  • Chan EJ, Welberry TR, Heerdegen AP, Goossens DJ. Diffuse scattering study of aspirin forms (I) and (II). Acta Crystallogr B. 2010;66:696–707. doi: 10.1107/S0108768110037055
  • Ewald PP. Zur Theorie der Interferenzen der Röntgentstrahlen in Kristallen. Z Phys. 1913;14:465–472.
  • Friedrich W. Röntgenstrahlinterferenzen. Phys Z. 1913;14:1079–1087.
  • Debye P. Interferenz von Röntgenstrahlen und Wärmebewegung. Ann Phys. 1914;43:49–92.
  • Schrödinger E. Über die Schärfe der Röntgenstrahlen erzeugenden Interferenzbilder. Phys Z. 1914;15:79–86.
  • Brillouin LN. Diffusion de la lumière et des rayons X par un corps transparent homogéne – Influence de l'agitation thermique. Ann Phys. 1922;17:88–122.
  • Faxén H. Die bei Interferenz von Röntgenstrahlen durch die Wärmebewegung entstehende zerstreute Strahlung. Ann Phys. 1917;359(24):615–620. doi: 10.1002/andp.19173592404
  • Faxén H. Die bei Interferenz von Röntgenstrahlen infolge der Wärmebewegung entstehende Streustrahlung. Z Phys. 1923;17:266–278. doi: 10.1007/BF01328684
  • Waller I. Zur Frage der Einwirkung der Wärmebewegung auf die Interferenz von Röntgenstrahlen. Z Phys. 1923;17:398–408. doi: 10.1007/BF01328696
  • Waller I. Dissertation: Theoretische Studien zur Interferenz- und Dispersionstheorie der Röntgenstrahlen. Uppsala: Uppsala Univ. Arsskr.; 1925.
  • Born M, Sarginson K. The effect of thermal vibrations on the scattering of x-rays. Proc R Soc Lond A: Math Phys Eng Sci. 1941;179:69–93. doi: 10.1098/rspa.1941.0080
  • Lonsdale K, Smith H. An experimental study of diffuse X-ray reflexion by single crystals. Proc R Soc Lond A. 1941;179:8–50. doi: 10.1098/rspa.1941.0075
  • Lonsdale K. X-ray study of crystal dynamics: an historical and critical survey of experiment and theory. Proc Phys Soc. 1942;54:314–353. doi: 10.1088/0959-5309/54/4/302
  • Edwards OS, Lipson H. Imperfections in the structure of Cobalt. I. Experimental work and proposed structure. Proc R Soc Lond Ser A. 1942;180:268–277. doi: 10.1098/rspa.1942.0039
  • Wilson AJC. Imperfections in the structure of cobalt. II. Mathematical treatment of proposed structure. Proc R Soc Lond Ser A: Math Phys Sci. 1942;180(982):277–285. doi: 10.1098/rspa.1942.0040
  • Hendricks S, Teller E. X-ray interference in partially ordered layer lattices. J Chem Phys. 1942;10(3):147–167. doi: 10.1063/1.1723678
  • Jagodzinski H. Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Röntgeninterferenzen. I. Berechnung des Fehlordnungsgrades aus den Röntgenintensitaten. Acta Crystallogr. 1949;2(4):201–207. doi: 10.1107/S0365110X49000552
  • Jagodzinski H. Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Röntgeninterferenzen. II. Berechnung der fehlgeordneten dichtesten Kugelpackungen mit Wechselwirkungen der Reichweite 3. Acta Crystallogr. 1949;2(4):208–214. doi: 10.1107/S0365110X49000564
  • Jagodzinski H. Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Röntgeninterferenzen. III. Vergleich der Berechnungen mit experimentellen Ergebnissen. Acta Crystallogr. 1949;2(5):298–304. doi: 10.1107/S0365110X49000771
  • Bürgi HB, Hostettler M, Birkedal H, Schwarzenbach D. Stacking disorder: the hexagonal polymorph of tris (bicyclo [2.1. 1] hexeno) benzene and related examples. Z Kristallogr. 2005;220(12):1066–1075.
  • Dornberger-Schiff K. On order-disorder structures (OD-structures). Acta Crystallogr. 1956;9(7):593–601. doi: 10.1107/S0365110X56001625
  • Dornberger-Schiff K. Zur OD-Struktur (order-disorder structure) des Purpurogallin. Acta Crystallogr. 1957;10:271–277. doi: 10.1107/S0365110X57002832
  • Cowley JM. An approximate theory of order in alloys. Phys Rev. 1950;77:669–675. doi: 10.1103/PhysRev.77.669
  • Cowley JM. X-ray measurement of order in single crystals of CuAu. J Appl Phys. 1950;21:24–30.
  • Warren BE, Averbach BL, Roberts BW. Atomic size effect in the X-ray scattering by alloys. J Appl Phys. 1951;22:1493–1496. doi: 10.1063/1.1699898
  • Borie B. X-ray diffraction effects of atomic size in alloys. Acta Crystallogr. 1957;10:89–96. doi: 10.1107/S0365110X57000274
  • Borie B. X-ray diffraction effects of atomic size in alloys. II. Acta Crystallogr. 1959;12(4):280–282. doi: 10.1107/S0365110X5900086X
  • Borie B. The separation of short range order and size effect diffuse scattering. Acta Crystallogr. 1961;14(5):472–474. doi: 10.1107/S0365110X61001522
  • Huang K. X-ray reflexions from dilute solid solutions. Proc R Soc Lond, Ser A. 1947;190(1020):102–117. doi: 10.1098/rspa.1947.0064
  • Bragg L, Lipson H. A simple method of demonstrating diffraction grating effects. J Sci Instrum. 1943;20(7):110–113. doi: 10.1088/0950-7671/20/7/303
  • Taylor CA, Hinde RM, Lipson H. Optical methods in X-ray analysis. I. The study of imperfect structures. Acta Crystallogr. 1951;4(3):261–266. doi: 10.1107/S0365110X51000854
  • Willis BTM. An optical method of studying the diffraction from imperfect crystals. III. Layer structures with stacking faults. Proc R Soc Lond Ser A. 1958;248(1253):183–198. doi: 10.1098/rspa.1958.0238
  • Bond WL. A single-crystal automatic diffractometer. I. Acta Crystallogr. 1955;8(12):741–746. doi: 10.1107/S0365110X55002338
  • Ladell J, Lowitzsch K. Automatic single crystal diffractometry. I. The kinematic problem. Acta Crystallogr. 1960;13:205–215. doi: 10.1107/S0365110X60000492
  • Flack HD, Glazer AM. Short-range order, thermal vibrations and expansion, and other properties of pseudosymmetric and mixed crystals of small organic crystals. Phil Trans R Soc Lond. 1970;266:559–639.
  • André Guinier. X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. San Francisco (CO): W.H. Freeman; 1963.
  • Wooster WA. Diffuse X-ray reflections from crystals. Oxford: Oxford University Press; 1962.
  • Amorós JL, Amorós M. Molecular crystals; their transforms and diffuse scattering. New York: Wiley; 1968.
  • Hosemann R, Bagchi SN. Direct analysis of diffraction by matter. Amsterdam: North-Holland; New York: Interscience; 1962.
  • Warren BE. X-ray diffraction. Reading (MA): Addison-Wesley; 1969.
  • Guinier A. Théorie et Technique del la Radiocristallographie. Paris: Dunod; 1956.
  • Lewis R. Position sensitive detectors for synchrotron radiation studies: the tortoise and the hare? Nucl Instrum Methods A. 2003;513:172–177. doi: 10.1016/j.nima.2003.08.026
  • Amemiya Y, Matsushita T, Nakagawa A, Satow Y, Miyahara J, Chikawa J-I. Design and performance of an imaging plate system for X-ray diffraction study. Nucl Instrum Methods A. 1988;266:645–653. doi: 10.1016/0168-9002(88)90458-5
  • Miyahara J, Takahashi K, Amemiya Y, Kamiya N, Satow Y. A new type of X-ray area detector utilizing laser stimulated luminescence. Nucl Instrum Methods A. 1986;246:572–578. doi: 10.1016/0168-9002(86)90156-7
  • Tanaka I, Yao M, Suzuki M, Hikichi K, Matsumoto T, Kozasa M, Katayama C. An automatic diffraction data collection system with an imaging plate. J Appl Crystallogr. 1990;23:334–339. doi: 10.1107/S0021889890004009
  • Iwasaki H, Matsuo Y, Ohshima K, Hashimoto S. Time-resolved two-dimensional observation of the change in X-ray diffuse scattering from an alloy single crystal using an imaging plate on a synchrotron-radiation source. J Appl Crystallogr. 1990;23:509–514. doi: 10.1107/S0021889890007877
  • Kolatkar AR, Clarage JB, Phillips GN. Analysis of diffuse scattering from yeast initiator tRNA crystals. Acta Crystallogr D. 1994;50:210–218. doi: 10.1107/S0907444993011692
  • Amemiya Y. Imaging plates for use with synchrotron radiation. J Synchrotron Radiat. 1995;2:13–21. doi: 10.1107/S0909049594007405
  • Kopecky M, Colella R. Exploring reciprocal space of a quasicrystal by means of an imaging plate. J Appl Crystallogr. 1999;32(3):442–451. doi: 10.1107/S0021889898017725
  • Welberry TR, Goossens DJ, Heerdegen AP, Lee PL. Problems in measuring diffuse X-ray scattering. Z Kristallogr. 2005;220:1052–1058.
  • Weber T, Estermann MA, Buergi H-B. Structural complexity of a polar perhydrotriphenylene inclusion compound brought to light by synchrotron radiation. Acta Crystallogr B. 2001;57:579–590. doi: 10.1107/S0108768101005468
  • Sakabe K, Sasaki K, Watanabe N, Suzuki M, Wang ZG, Miyahara J, Sakabe N. Large-format imaging plate and Weissenberg camera for accurate protein crystallographic data collection using synchrotron radiation. J Synchrotron Radiat. 1997;4:136–146. doi: 10.1107/S0909049597003683
  • Weber T, Boysen H, Frey F. Longitudinal positional ordering of n-alkane molecules in urea inclusion compounds. Acta Crystallogr B. 2000;56:132–141. doi: 10.1107/S0108768199010617
  • Gruner SM, Tate MW, Eikenberry EF. Charge-coupled device area X-ray detectors. Rev Sci Instrum. 2002;73:2815–2842. doi: 10.1063/1.1488674
  • Barna SL, Shepherd JA, Tate MW, Wixted RL, Eikenberry EF, Gruner SM. Characterization of a prototype pixel array detector (pad) for use in microsecond framing time-resolved X-ray diffraction studies. IEEE Trans Nucl Sci. 1997;44(3):950–956. doi: 10.1109/23.603783
  • Broennimann C, Eikenberry EF, Henrich B, Horisberger R, Huelsen G, Pohl E, Schmitt B, Schulze-Briese C, Suzuki M, Tomizaki T, Toyokawa H, Wagner A. The PILATUS 1M detector. J Synchrotron Radiat. 2006;13:120–130. doi: 10.1107/S0909049505038665
  • Pangaud P, Basolo S, Boudet N, Berar J-F, Chantepie B, Clemens J-C, Delpierre P, Dinkespiler B, Medjoubi K, Hustache S, Menouni M, Morel C. XPAD3-S: a fast hybrid pixel readout chip for X-ray synchrotron facilities. Nucl Instrum Methods A. 2008;591(1):159–162. doi: 10.1016/j.nima.2008.03.047
  • Gimenez EN, Ballabriga R, Campbell M, Horswell I, Llopart X, Marchal J, Sawhney KJS, Tartoni N, Turecek D. Characterization of Medipix3 with synchrotron radiation. IEEE Trans Nucl Sci. 2011;58(1):323–332. doi: 10.1109/TNS.2010.2089062
  • Donath T, Brandstetter S, Cibik L, Commichau S, Hofer P, Krumrey M, Luethi B, Marggraf S, Mueller P, Schneebeli M, Schulze-Briese C, Wernecke L. Characterization of the PILATUS photon-counting pixel detector for X-ray energies from 1.75 keV to 60 keV. J Phys Conf Ser. 2013;425: Article no. 062001. doi: 10.1088/1742-6596/425/6/062001
  • Trueb P, Sobott BA, Schnyder R, Loeliger T, Schneebeli M, Kobas M, Rassool RP, Peake DJ, Broennimann C. Improved count rate corrections for highest data quality with PILATUS detectors. J Synchrotron Radiat. 2012;19:347–351. doi: 10.1107/S0909049512003950
  • Sobott BA, Broennimann C, Schmitt B, Trueb P, Schneebeli M, Lee V, Peake DJ, Elbracht-Leong S, Schubert A, Kirby N, Boland MJ, Chantler CT, Barnea Z, Rassool RP. Success and failure of dead-time models as applied to hybrid pixel detectors in high-flux applications. J Synchrotron Radiat. 2013;20:347–354. doi: 10.1107/S0909049513000411
  • Simonov A, Weber T, Steurer W. Experimental uncertainties of three-dimensional pair distribution function investigations exemplified on the diffuse scattering from a tris-tert-butyl-1,3,5-benzene tricarboxamide single crystal. J Appl Crystallogr. 2014;47:2011–2018. doi: 10.1107/S1600576714023668
  • Estermann MA, Steurer W. Diffuse scattering data acquisition techniques. Phase Transit. 1998;67(1):165–195. doi: 10.1080/01411599808219193
  • Welberry TR, Goossens DJ, David WIF, Gutmann MJ, Bull MJ, Heerdegen AP. Diffuse neutron scattering in benzil, , using the time-of-flight Laue technique. J Appl Crystallogr. 2003;36:1440–1447.
  • Wall ME. Methods and software for diffuse X-ray scattering from protein crystals. Methods Mol Biol. 2009;544(Chapter 17):269–279. doi: 10.1007/978-1-59745-483-4_17
  • Estermann MA, Scheidegger S, Reifler H, Steurer W. A helium beam path for an imaging-plate detector system. J Appl Crystallogr. 1997;30:1165–1166. doi: 10.1107/S0021889897005773
  • Thorne RE, Stum Z, Kmetko J, O'Neill K, Gillilan R. Microfabricated mounts for high-throughput macromolecular cryocrystallography. J Appl Crystallogr. 2003;36:1455–1460. doi: 10.1107/S0021889803018375
  • Schreuer J, Baumgarte A, Steurer W. A new single-crystal mounting technique for low-background high-temperature X-ray diffraction. J Appl Crystallogr. 1997;30:1162–1164. doi: 10.1107/S0021889897003142
  • Weber T, Deloudi S, Kobas M, Yokoyama Y, Inoue A, Steurer W. Reciprocal-space imaging of a real quasicrystal. A feasibility study with PILATUS 6M. J Appl Crystallogr. 2008;41:669–674. doi: 10.1107/S0021889808014386
  • Aebischer A, Hostettler M, Hauser J, Kraemer K, Weber T, Gudel HU, Buergi H-B. Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides. Angew Chem Int Ed. 2006;45:2802–2806. doi: 10.1002/anie.200503966
  • Blessing RH. Outlier treatment in data merging. J Appl Crystallogr. 1997;30:421–426. doi: 10.1107/S0021889896014628
  • Weber T, Simonov A, Malliakas CD, Kanatzidis MG. A 3D-ΔPDF real structure study of PbTe. Acta Crystallogr A. 2013;69:s572.
  • Weber T. Crystallography beyond the Bragg Peaks. CHIMIA. 2014;68(1):60–65. doi: 10.2533/chimia.2014.60
  • Boysen H, Adlhart W. Resolution corrections in diffuse scattering experiments. J Appl Crystallogr. 1987;20:200–209. doi: 10.1107/S0021889887086825
  • Mueller M, Wang M, Schulze-Briese C. Optimal fine φ-slicing for single-photon-counting pixel detectors. Acta Crystallogr D. 2012;68:42–56. doi: 10.1107/S0907444911049833
  • Weber T, Simonov A. The three-dimensional pair distribution function analysis of disordered single crystals: basic concepts. Z Kristallogr. 2012;227:238–247. doi: 10.1524/zkri.2012.1504
  • Welberry TR, Butler BD. Interpretation of diffuse X-ray scattering via models of disorder. J Appl Crystallogr. 1994;27:205–231. doi: 10.1107/S0021889893011392
  • Welberry TR. Diffuse X-ray scattering and models of disorder. Rep Prog Phys. 1985;48:1543–1594. doi: 10.1088/0034-4885/48/11/002
  • Simonov A, Weber T, Steurer W. Yell: a computer program for diffuse scattering analysis via three-dimensional delta pair distribution function refinement. J Appl Crystallogr. 2014;47:1146–1152. doi: 10.1107/S1600576714008668
  • Urban P, Simonov A, Weber T, Oeckler O. Real structure of GeBiTe – refinement on diffuse scattering data with the 3D-ΔPDF method. J Appl Crystallogr. 2015;48:200–211.
  • Welberry TR. Multi-site correlations and the atomic size effect. J Appl Crystallogr. 1986;19:382–389. doi: 10.1107/S0021889886089185
  • Kobas M, Weber T, Steurer W. Structural disorder in the decagonal Al–Co–Ni. I. Patterson analysis of diffuse X-ray scattering data. Phys Rev B. 2005;71(22): Article no. 224205.
  • Kobas M, Weber T, Steurer W. Structural disorder in the decagonal Al–Co–Ni. II. Modeling. Phys Rev B. 2005;71(22): Article no. 224206.
  • Welberry TR, Withers RL. The rôle of phase in diffuse diffraction patterns and its effect on real-space structure. J Appl Crystallogr. 1991;24:18–29. doi: 10.1107/S0021889890008494
  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21:1087–1092. doi: 10.1063/1.1699114
  • Weber T, Bürgi HB. Determination and refinement of disordered crystal structures using evolutionary algorithms in combination with Monte Carlo methods. Acta Crystallogr A. 2002;58:526–540. doi: 10.1107/S0108767302012114
  • Welberry TR, Proffen T, Bown M. Analysis of single-crystal diffuse X-ray scattering via automatic refinement of a Monte Carlo model. Acta Crystallogr A. 1998;54:661–674. doi: 10.1107/S010876739800419X
  • Michels-Clark TM, Lynch VE, Hoffmann CM, Hauser J, Weber T, Harrison R, Bürgi HB. Analyzing diffuse scattering with supercomputers. J Appl Crystallogr. 2013;46(6):1616–1625. doi: 10.1107/S0021889813025399
  • McGreevy RL, Pusztai L. Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol Simul. 1988;1:359–367. doi: 10.1080/08927028808080958
  • Nield V, Keen D, Hayes W, McGreevy RL. Structural changes in silver bromide at the melting point. J Phys-Cond Mat. 1992;4(32):6703–6714. doi: 10.1088/0953-8984/4/32/005
  • Nield V, Keen D, Hayes W, McGreevy R. Structure and fast-ion conduction in delta-AgI. Solid State Ion. 1993;66:247–258. doi: 10.1016/0167-2738(93)90414-X
  • Nield VM, Keen DA, McGreevy RL. The interpretation of single-crystal diffuse-scattering using reverse Monte-Carlo modeling. Acta Crystallogr A. 1995;51:763–771. doi: 10.1107/S0108767395004399
  • Gehlen PC, Cohen JB. Computer simulation of the structure associated with local order in alloys. Phys Rev. 1965;139:A844–A855. doi: 10.1103/PhysRev.139.A844
  • Gerold V, Kern J. The determination of atomic interaction energies in solid solutions from short range order coefficients – an inverse Monte-Carlo method. Acta Metall. 1987;35:393–399. doi: 10.1016/0001-6160(87)90246-X
  • Ice GE, Sparks CJ, Habenschuss A, Shaffer LB. Anomalous X-ray-scattering measurement of near-neighbor individual pair displacements and chemical order in FeNi. Phys Rev Lett. 1992;68(6):863–866.
  • Schonfeld B, Reinhard L, Kostorz G, Buhrer W. Short-range order and atomic displacements in Ni-20 At. % Cr single-crystals. Phys Status Solidi B – Basic Res. 1988;148:457–471. doi: 10.1002/pssb.2221480203
  • Chassagne F, Bessiere M, Calvayrac Y, Cenedese P, Lefebvre S. X-ray diffuse scattering investigation of different states of local order in Ni-Al solid solutions. Acta Metall. 1989;37:2329–2338. doi: 10.1016/0001-6160(89)90030-8
  • Reinhard L, Schönfeld B, Kostorz G, Bührer W. Short-range order in α-brass. Phys Rev B. 1990;41:1727–1734. doi: 10.1103/PhysRevB.41.1727
  • Jiang X, Ice G, Sparks C, Robertson L, Zschack P. Local atomic order and individual pair displacements of Fe46.5Ni53.5 and Fe22.5Ni77.5 from diffuse X-ray scattering studies. Phys Rev B. 1996;54:3211–3226. doi: 10.1103/PhysRevB.54.3211
  • Schonfeld B. Local atomic arrangements in binary alloys. Prog Mater Sci. 1999;44:435–543. doi: 10.1016/S0079-6425(99)00005-5
  • Osaka K, Takama T. X-ray study of the short-range order structure in cu24.3 at. % mn alloy. Acta Mater. 2002;50:1289–1296. doi: 10.1016/S1359-6454(01)00411-6
  • Steiner C, Schönfeld B, Portmann MJ, Kompatscher M, Kostorz G, Mazuelas A, Metzger T, Kohlbrecher J, Demé B. Local order in Pt–47at.% Rh measured with X-ray and neutron scattering. Phys Rev B. 2005;71: Article no. 104204. doi: 10.1103/PhysRevB.71.104204
  • Sax CR, Schönfeld B, Ruban AV. Interactions and phase transformations in Fe-Pd. Phys Rev B. 2014;89: Article no. 014201. doi: 10.1103/PhysRevB.89.014201
  • Smith W, Forester TR. DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. J Mol Graph. 1996;14:136–141. doi: 10.1016/S0263-7855(96)00043-4
  • Todorov IT, Smith W, Trachenko K, Dove MT. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem. 2006;16:1911–1918. doi: 10.1039/b517931a
  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem. 1983;4:187–217. doi: 10.1002/jcc.540040211
  • Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M. CHARMM. The biomolecular simulation program. J Comput Chem. 2009;30:1545–1614. doi: 10.1002/jcc.21287
  • Wikipedia. Density functional theory [Internet]. WWW; 2014. Available from: http://en.wikipedia.org/wiki/Density_functional_theory.
  • Wikipedia. Quantum chemistry and solid-state physics software [Internet]. WWW; 2014. Available from: http://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solidstate_physics_software.
  • Willis BTM, Pryor AW. Thermal vibrations in crystallography. Cambridge: Cambridge University Press; 1975.
  • Zachariasen WH. A theoretical study of the diffuse scattering of X-rays by crystals. Phys Rev. 1940;57:597–602. doi: 10.1103/PhysRev.57.597
  • Born M. Theoretical investigations on the relation between crystal dynamics and X-ray scattering. Rep Prog Phys. 1942;9:294–333. doi: 10.1088/0034-4885/9/1/319
  • Zachariasen W. Theory of X-ray diffraction crystals. New York: Wiley; 1945.
  • James RW. The optical principles of the diffraction of X-rays. London: G. Bell and Sons; 1948.
  • Olmer P. Dispersion des vitesses des ondes acoustiques dans l'aluminium. Acta Crystallogr. 1948;1:57–63. doi: 10.1107/S0365110X48000181
  • Curien H. Diffusion thermique des rayons X par des monocristaux de fer-α et dynamique du réseau cubique centré. Acta Crystallogr. 1952;5:393. doi: 10.1107/S0365110X52001210
  • Joynson RE. Elastic spectrum of zinc from the temperature scattering of X-rays. Phys Rev. 1954;94:851–855. doi: 10.1103/PhysRev.94.851
  • Jacobsen EH. Elastic spectrum of copper from temperature-diffuse scattering of X-rays. Phys Rev. 1955;97:654–659. doi: 10.1103/PhysRev.97.654
  • Walker CB. X-ray study of lattice vibrations in aluminum. Phys Rev. 1956;103:547–557. doi: 10.1103/PhysRev.103.547
  • Cole H. Approximate elastic spectrum of acoustic waves in AgCl from X-ray scattering. J Appl Phys. 1953;24:482–487. doi: 10.1063/1.1721306
  • Boccara N. Frequencies of longitudinal and transverse optical oscillations in sylvine at 140 K. C R Hebd Seances Acad Sci. 1960;250:1025–1027.
  • Buyers WJL, Smith T. X-ray study of the lattice dynamics of sodium chloride. Phys Rev. 1966;150:758–765. doi: 10.1103/PhysRev.150.758
  • Ramachandran GN, Wooster WA. Determination of elastic constants of crystals from diffuse reflexions of X-rays. I. Theory of method. Acta Crystallogr. 1951;4:335–344. doi: 10.1107/S0365110X51001082
  • Ramachandran GN, Wooster WA. Determination of elastic constants of crystals from diffuse reflexions of X-rays. II. Application to some cubic crystals. Acta Crystallogr. 1951;4:431–440. doi: 10.1107/S0365110X51001392
  • Hoerni JA, Wooster WA. The interpretation of diffuse X-ray reflexions from single crystals. II. Acta Crystallogr. 1953;6:543–547. doi: 10.1107/S0365110X53001460
  • Prince E, Wooster WA. The elastic constants of zinc blende, determined from thermal diffuse scattering of X-rays. Acta Crystallogr. 1951;4:191. doi: 10.1107/S0365110X51000647
  • Hoerni JA, Wooster WA. Determination of elastic constants of lithium fluoride from photographs of diffuse reflexions of X-rays. Acta Crystallogr. 1952;5:386–387. doi: 10.1107/S0365110X5200112X
  • Prasad SC, Wooster WA. The determination of the elastic constants of silicon by diffuse X-ray reflexions. Acta Crystallogr. 1955;8:361. doi: 10.1107/S0365110X55001163
  • Prasad SC, Wooster WA. The study of the elastic constants of white tin by diffuse X-ray reflexion. Acta Crystallogr. 1955;8:682–686. doi: 10.1107/S0365110X55002119
  • Prasad SC, Wooster WA. The determination of the elastic constants of germanium by diffuse X-ray reflexions. Acta Crystallogr. 1955;8:506–507. doi: 10.1107/S0365110X55001552
  • Prince E, Wooster WA. Determination of elastic constants of crystals from diffuse reflexions of X-rays. III. Diamond. Acta Crystallographica. 1953;6:450–454. doi: 10.1107/S0365110X53001290
  • Prasad SC, Wooster WA. The elasticity of iron pyrites, FeS2. Acta Crystallogr. 1956;9:169–173.
  • Sándor E, Wooster WA. Diffuse streaks in the diffraction pattern of vanadium single crystals. Acta Crystallogr. 1960;13:339–348. doi: 10.1107/S0365110X60000807
  • Garg A, Srivastava RC. Elastic constants of ammonium fluoroberyllate by thermal diffuse scattering of X-rays. Acta Crystallogr A. 1980;36:873–877. doi: 10.1107/S0567739480001842
  • Amorós JL, Canut ML, de Acha A. Interpretation of the extended continuous diffuse regions of X-ray thermal diffuse scattering of molecular crystals. Z Kristallogr. 1960;114:39–65. doi: 10.1524/zkri.1960.114.1-6.39
  • Thomas LH, Welberry TR, Goossens DJ, Heerdegen AP, Gutmann MJ, Teat SJ, Wilson CC, Lee PL, Cole JM. Disorder in pentachloronitrobenzene, CClNO: a diffuse scattering study. Acta Crystallogr B. 2007;63:663–673.
  • Markham MF. Measurement of elastic constants by the ultrasonic pulse method. Br J Appl Phys. 1957;S6:56–63. doi: 10.1088/0508-3443/8/S6/312
  • Wu Z, Hong H, Aburano R, Zschack P, Jemian P, Tischler J, Chen H, Luh D-A, Chiang T-C. Pattern of X-ray scattering by thermal phonons in Si. Phys Rev B. 1999;59:3283–3286. doi: 10.1103/PhysRevB.59.3283
  • Xu R, Chiang T. Determination of phonon dispersion relations by X-ray thermal diffuse scattering. Z Kristallogr. 2005;220:1009–1016.
  • Holt M, Czoschke P, Hong H, Zschack P, Birnbaum HK, Chiang TC. Phonon dispersions in niobium determined by X-ray transmission scattering. Phys Rev B. 2002;66: Article no. 064303. doi: 10.1103/PhysRevB.66.064303
  • Holt M, Zschack P, Hong H, Chou MY, Chiang T-C. X-ray studies of phonon softening in tise2. Phys Rev Lett. 2001;86:3799–3802. doi: 10.1103/PhysRevLett.86.3799
  • Baron AQ. Phonons in crystals using inelastic X-ray scattering. J Spectrosc Soc Jpn. 2009;58:205–214.
  • Brockhouse BN, Stewart AT. Scattering of neutrons by phonons in an aluminum single crystal. Phys Rev. 1955;100:756–757. doi: 10.1103/PhysRev.100.756
  • Brockhouse BN, Stewart AT. Normal modes of aluminum by neutron spectrometry. Rev Mod Phys. 1958;30:236–249. doi: 10.1103/RevModPhys.30.236
  • Manley M, Lynn J, Abernathy D, Specht E, Delaire O, Bishop A, Sahul R, Budai J. Phonon localization drives polar nanoregions in a relaxor ferroelectric. Nat Commun. 2014;5:3683–3688. doi: 10.1038/ncomms4683
  • Welberry TR, Goossens DJ, David WIF, Gutmann MJ, Bull MJ, Heerdegen AP. Diffuse neutron scattering in benzil, CDO, using the time-of-flight Laue technique. J Appl Cryst. 2003;36:1440–1447.
  • Born M, Huang K. Dynamical theory of crystal lattices. Oxford: Clarendon Press; 1966.
  • Cochran W. The dynamics of atoms in crystals. London: William Clowes Ltd.; 1973.
  • Dove MT. Introduction to lattice dynamics. Cambridge: Cambridge University Press; 1993.
  • Woods ADB, Cochran W, Brockhouse BN. Lattice dynamics of alkali halide crystals. Phys Rev. 1960;119:980–999. doi: 10.1103/PhysRev.119.980
  • Etchepare J, Merian M, Smetankine L. Vibrational normal modes of SiO. I. α and β quartz. J Chem Phys. 1974;60:1873–1876.
  • Etchepare J, Merian M, Kaplan P. Vibrational normal modes of SiO. II. Cristobalite and tridymite. J Chem Phys. 1978;68:1531–1537.
  • Shimanouchi T, Tsuboi M, Miyazawa T. Optically active lattice vibrations as treated by the GFMatrix method. J Chem Phys. 1961;35:1597–1612. doi: 10.1063/1.1732116
  • Elcombe MM. Some aspects of the lattice dynamics of quartz. Proc Phys Soc Lond. 1967;91:947–958. doi: 10.1088/0370-1328/91/4/323
  • Hua GL, Welberry TR, Withers RL, Thompson JG. An electron diffraction and lattice-dynamical study of the diffuse scattering in β-cristobalite, SiO. J Appl Crystallogr. 1988;21:458–465.
  • Welberry TR, Hua GL, Withers RL. An optical transform and Monte Carlo study of the disorder in β-cristobalite SiO. J Appl Crystallogr. 1989;22:87–95.
  • Keen DA, Dove MT. Local structures of amorphous and crystalline phases of silica, SiO, by neutron total scattering. J Phys Condens Matter. 1999;11:9263–9273.
  • Withers RL. Disorder, structured diffuse scattering and the transmission electron microscope. Z Kristallogr. 2005;220:1027–1034.
  • Tautz F, Heine V, Dove M, Chen X. Rigid unit modes in the molecular-dynamics simulation of quartz and the incommensurate phase-transition. Phys Chem Miner. 1991;18:326–336. doi: 10.1007/BF00200190
  • Swainson IP, Dove MT. Molecular dynamics simulation of alpha- and beta-cristobalite. J Phys-Cond Mat. 1995;7:1771–1788. doi: 10.1088/0953-8984/7/9/005
  • Tucker MG, Squires MP, Dove MT, Keen DA. Dynamic structural disorder in cristobalite: neutron total scattering measurement and reverse Monte Carlo modelling. J Phys-Cond Mat. 2001;13:403–423. doi: 10.1088/0953-8984/13/3/304
  • Wells SA, Dove MT, Tucker MG, Trachenko K. Real-space rigid-unit-mode analysis of dynamic disorder in quartz, cristobalite and amorphous silica. J Phys-Cond Mat. 2002;14:4645–4657. doi: 10.1088/0953-8984/14/18/302
  • Gambhir M, Dove M, Heine V. Rigid unit modes and dynamic disorder: SiO cristobalite and quartz. Phys Chem Miner. 1999;26:484–495.
  • Dove M, Hammonds K, Heine V, Withers R, Xiao Y, Kirkpatrick R. Rigid unit modes in the high-temperature phase of SiO2 tridymite: calculations and electron diffraction. Phys Chem Miner. 1996;23:56–62. doi: 10.1007/BF00202994
  • Hammonds KF, Heine V, Dove MT. Rigid-unit modes and the quantitative determination of the flexibility possessed by zeolite frameworks. J Phys Chem B. 1998;102:1759–1767. doi: 10.1021/jp980006z
  • Giddy AP, Dove MT, Pawley GS, Heine V. The determination of rigid-unit modes as potential soft modes for displacive phase transitions in framework crystal structures. Acta Crystallogr A. 1993;49:697–703. doi: 10.1107/S0108767393002545
  • Hammonds KD, Heine V, Dove MT. Insights into zeolite behaviour from the rigid unit mode model. Phase Transit. 1997;61:155–172. doi: 10.1080/01411599708223735
  • Dove MT, Pryde AKA, Heine V, Hammonds KD. Exotic distributions of rigid unit modes in the reciprocal spaces of framework aluminosilicates. J Phys-Cond Mat. 2007;19: Article no. 275209. doi: 10.1088/0953-8984/19/27/275209
  • Pryde AKA, Hammonds KD, Dove MT, Heine V, Gale JD, Warren MC. Rigid unit modes and the negative thermal expansion in ZrW2O8. Phase Transit. 1997;61:141–153. Workshop of the MINC Research Project of the European-Science-Foundation, Cambridge, Jun 20–21, 1996. doi: 10.1080/01411599708223734
  • Conterio MJ, Goodwin AL, Tucker MG, Keen DA, Dove MT, Peters L, Evans JSO. Local structure in Ag(3)[CoCN)(6)]: colossal thermal expansion, rigid unit modes and argentophilic interactions. J Phys-Cond Mat. 2008;20: Article no. 255225. doi: 10.1088/0953-8984/20/25/255225
  • Tucker MG, Keen DA, Evans JSO, Dove MT. Local structure in ZrW2O8 from neutron total scattering. J Phys-Cond Mat. 2007;19. 3rd Workshop on Reverse Monte Carlo Methods, Budapest, Hungary, Sep 28–30, 2006.
  • Hayward SA, Pryde AKA, de Dombal RF, Carpenter MA, Dove MT. Rigid unit modes in disordered nepheline: a study of a displacive incommensurate phase transition. Phys Chem Miner. 2000;27:285–290. doi: 10.1007/s002690050257
  • Withers RL. An analytical solution for the zero frequency hyperbolic {RUM} modes of distortion of SiO-tridymite. Solid State Sci. 2003;5:115–123.
  • Clapp PC, Moss SC. Correlation functions of disordered binary alloys. i. Phys Rev. 1966;142:418–427. doi: 10.1103/PhysRev.142.418
  • Clapp PC, Moss SC. Correlation functions of disordered binary alloys. ii. Phys Rev. 1968;171:754–763. doi: 10.1103/PhysRev.171.754
  • Moss SC, Clapp PC. Correlation functions of disordered binary alloys. iii. Phys Rev. 1968;171:764–777. doi: 10.1103/PhysRev.171.764
  • Butler BD, Welberry TR. Interpretation of displacement-caused diffuse scattering using the Taylor expansion. Acta Crystallogr A. 1993;49:736–743. doi: 10.1107/S0108767393003976
  • Borie B, Sparks CJ Jnr. The interpretation of intensity distributions from disordered binary alloys. Acta Crystallogr A. 1971;27:198–201. doi: 10.1107/S0567739471000469
  • Tibballs JE. The separation of displacement and substitutional disorder scattering: a correction for structure-factor ratio variation. J Appl Crystallogr. 1975;8:111–114. doi: 10.1107/S0021889875009740
  • Georgopoulos P, Cohen JB. The determination of short range order and local atomic displacements in disordered binary solid solutions. J de Physique Colloque. 1977;38:191–196.
  • Ramesh TG, Ramaseshan S. Determination of the static displacement of atoms in a binary alloy system using anomalous scattering. Acta Crystallogr A. 1971;27:569–572. doi: 10.1107/S056773947100127X
  • Schönfeld B, Roelofs H, Kostorz G, Robertson JL, Zschack P, Ice GE. Static atomic displacements in Cu-Mn measured with diffuse X-ray scattering. Phys Rev B. 2008;77: Article no. 144202. doi: 10.1103/PhysRevB.77.144202
  • Schönfeld B, Bucher R, Kostorz G, Zolliker M. Magnetic and atomic short-range order in Cu-rich Cu-Mn. Phys Rev B. 2004;69: Article no. 224205. doi: 10.1103/PhysRevB.69.224205
  • Ohshima K. Magnetic short-range order in disordered and ordered binary alloys. Z Kristallogr. 2005;220:1082–1087.
  • Terauchi H, Cohen JB. Short-range ordering of vacancies in TiO at 1323 K. Acta Crystallogr A. 1979;35:646–652. doi: 10.1107/S0567739479001509
  • Morinaga M, Cohen JB. The defect structure of . II. Local ionic arrangements in the disordered phase. Acta Crystallogr A. 1979;35:975–989.
  • Morinaga M, Cohen JB, Faber J Jnr. X-ray diffraction study of Zr(Ca,Y)O. I. The average structure. Acta Crystallogr A. 1979;35:789–795.
  • Morinaga M, Cohen JB, Faber J Jnr. X-ray diffraction study of Zr(Ca,Y)O. II. Local ionic arrangements. Acta Crystallogr A. 1980;36:520–530.
  • Welberry TR, Goossens DJ, Haeffner DR, Lee PL, Almer J. High-energy diffuse scattering on the 1-ID beamline at the advanced photon source. J Synchrotron Radiat. 2003;10:284–286. doi: 10.1107/S0909049503004643
  • Allpress JG, Rossell HJ, Scott HG. Crystal structures of the fluorite-related phases cahf4o9 and ca6hf19o44. J Solid State Chem. 1975;14(3):264–273. doi: 10.1016/0022-4596(75)90031-6
  • Allpress JG, Rossell HJ. A microdomain description of defective fluorite-type phases CaMO(M =Zr, Hf; x = ). J Solid State Chem. 1975;15:68–78.
  • Rossell HJ, Scott HG. Ordering in fluorite-related oxide systems. J Phys Colloques. 1977;38(C7):28–31. doi: 10.1051/jphyscol:1977704
  • Neder RB, Frey F, Schulz H. Defect structure of zirconia (ZrCaO) at 290 and 1550 K. Acta Crystallogr A. 1990;46:799–809.
  • Neder RB, Frey F, Schulz H. Diffraction theory for diffuse scattering by correlated microdomains in materials with several atoms per unit cell. Acta Crystallogr A. 1990;46:792–798. doi: 10.1107/S0108767390006602
  • Proffen T, Neder RB, Frey F, Keen DA, Zeyen CME. Defect structure and diffuse scattering of zirconia single crystals with 10 and 15 mol% CaO at temperatures up to 1750 K. Acta Crystallogr B. 1993;49:605–610. doi: 10.1107/S0108768193000138
  • Proffen T, Neder RB, Frey F, Assmus W. Defect structure and diffuse scattering of zirconia single crystals doped with 7 mol% CaO. Acta Crystallogr B. 1993;49:599–604. doi: 10.1107/S0108768193000126
  • Welberry TR, Withers RL, Thompson JG, Butler BD. Diffuse scattering in yttria-stabilized cubic zirconia. J Solid State Chem. 1992;100:71–89. doi: 10.1016/0022-4596(92)90157-Q
  • Welberry TR, Butler BD, Thompson JG, Withers RL. A 3d model for the diffuse scattering in cubic stabilized zirconias. J Solid State Chem. 1993;106:461–475. doi: 10.1006/jssc.1993.1306
  • Welberry TR, Withers RL, Mayo SC. A modulation wave approach to understanding the disordered structure of cubic stabilized zirconias (CSZs). J Solid State Chem. 1995;115:43–54. doi: 10.1006/jssc.1995.1100
  • Goff JP, Hayes W, Hull S, Hutchings MT, Clausen KN. Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys Rev B. 1999;59:14202–14219. doi: 10.1103/PhysRevB.59.14202
  • Hull S. Superionics: crystal structures and conduction processes. Rep Prog Phys. 2004;67:1233–1314. doi: 10.1088/0034-4885/67/7/R05
  • Welberry TR, Christy AG. A paracrystalline description of defect distributions in W ü stite, FeO. J Solid State Chem. 1995;117:398–406.
  • Welberry TR, Christy AG. Defect distribution and the diffuse X-ray diffraction pattern of W ü stite, FeO. Phys Chem Miner. 1997;24:24–38.
  • Koch F, Cohen JB. The defect structure of FeO. Acta Crystallogr B. 1969;25:275–287.
  • Schweika W, Hoser A, Martin M, Carlsson AE. Defect structure of ferrous oxide O. Phys Rev B. 1995;51:15771–15788.
  • Weber T, Simon A, Mattausch H, Kienle L, Oeckler O. Reliability of Monte Carlo simulations of disordered structures optimized with evolutionary algorithms exemplified with diffuse scattering from La(AlI). Acta Crystallogr A. 2008;64(6):641–653.
  • Oeckler O, Weber T, Kienle L, Mattausch H, Simon A. Cluster disorder and ordering principles in Al-stabilized ‘LaI’. Angew Chem Int Edit. 2005;44(25):3917–3921. doi: 10.1002/anie.200500594
  • Harada J, Watanabe M, Kodera S, Honjo G. Diffuse streak diffraction pattern of electron and X-rays due to low frequency optical mode in tetragonal BaTi. J Phys Soc Jpn. 1965;20(4):630–631.
  • Harada J, Tanaka M, Honjo G. Thermal diffuse streak in electron diffraction and low frequency transverse optic lattice waves of barium titanate. J Phys Soc Jpn. 1966;21(5):968–972. doi: 10.1143/JPSJ.21.968
  • Harada J, Honjo G. X-ray studies of lattice vibration in tetragonal barium titanate. J Phys Soc Jpn. 1967;22:45–57. doi: 10.1143/JPSJ.22.45
  • Comès R, Lambert M, Guinier A. Désordre linéaire dans les cristaux (cas du silicium, du quartz, et des pérovskites ferroélectriques). Acta Crystallogr A. 1970;26(2):244–254. doi: 10.1107/S056773947000061X
  • Paściak M, Welberry TR. Diffuse scattering and local structure modeling in ferroelectrics. Z Kristallogr. 2011;226:113–125. doi: 10.1524/zkri.2011.1300
  • Harada J, Axe JD, Shirane G. Neutron-scattering study of soft modes in cubic BaTi. Phys Rev B. 1971;4:155–162.
  • Zhong W, Vanderbilt D, Rabe KM. Phase transitions in BaTi from first principles. Phys Rev Lett. 1994;73:1861–1864.
  • Sepliarsky M, Stachiotti MG, Migoni RL. Ferroelectric soft mode and relaxation behavior in a molecular-dynamics simulation of KNb and KTa. Phys Rev B. 1997;56:566–571.
  • Tinte S, Sepliarsky M, Stachiotti MG, Migoni RL, Rodriguez CO. Modelling of the phase transitions sequence in KNb and BaTi. Z Phys B: Condens Matter. 1997;104:721–724.
  • Krakauer H, Yu R, Wang C-Z, Rabe KM, Waghmare U. Dynamic local distortions in KNb. J Phys Condens Matter. 1999;11(18):3779–3787.
  • Tinte S, Stachiotti MG, Sepliarsky M, Migoni RL, Rodriguez CO. Atomistic modelling of BaTi based on first-principles calculations. J Phys Condens Matter. 1999;11(48):9679–9690.
  • Tinte S, Stachiotti M, Sepliarsky M, Migoni R, Rodriguez C. Order-disorder, local structure and precursor effects in BaTiO3. Ferroelectrics. 2000;237:345–352. doi: 10.1080/00150190008216230
  • Paściak M, Boulfelfel SE, Leoni S. Polarized cluster dynamics at the paraelectric to ferroelectric phase transition in BaTi. J Phys Chem B. 2010;114:16465–16470.
  • Ravy S, Itié J-P, Polian A, Hanfland M. High-pressure study of X-ray diffuse scattering in ferroelectric perovskites. Phys Rev Lett. 2007;99: Article no. 117601. doi: 10.1103/PhysRevLett.99.117601
  • Liu Y, Withers RL, Wei X, Fitz Gerald JD. Structured diffuse scattering and polar nano-regions in the Ba(TiSn)O relaxor ferroelectric system. J Solid State Chem. 2007;180:858–865.
  • Liu Y, Withers RL, Nguyen B, Elliott K. Structurally frustrated polar nanoregions in BaTi-based relaxor ferroelectric systems. Appl Phys Lett. 2007;91: Article no. 152907.
  • Park S-E, Shrout TR. Ultrahigh strain and piezoelectric behaviour in relaxor based ferroelectric single crystals. J Appl Phys. 1997;82:1804–1811. doi: 10.1063/1.365983
  • Ye Z-G, Dong M, Zang L. Domain structures and phase transitions of the relaxor-based piezo-/ferroelectric (1-x)Pb(MgNb)OPbTiO. Ferroelectics. 1999;229:223–232.
  • Bing Y-H, Bokov AA, Ye Z-G, Noheda B, Shirane G. Structural phase transition and dielectric relaxation in single crystals. J Phys Condens Matter. 2005;17:2493–2507. doi: 10.1088/0953-8984/17/15/020
  • Burns G, Dacol FH. Crystalline ferroelectrics with glassy polarization behavior. Phys Rev B. 1983;28:2527–2530. doi: 10.1103/PhysRevB.28.2527
  • Cross LE. Relaxor ferroelectrics. Ferroelectrics. 1987;76:241–267. doi: 10.1080/00150198708016945
  • Welberry TR, Gutmann MJ, Woo H, Goossens DJ, Xu G, Stock C, Chen W, Ye Z-G. Single-crystal neutron diffuse scattering and Monte Carlo study of the relaxor ferroelectric PbZnNbO(PZN). J Appl Crystallogr. 2005;38:639–647.
  • Mihailova B, Angel RJ, Welsch A-M, Zhao J, Engel J, Paulmann C, Gospodinov M, Ahsbahs H, Stosch R, Güttler B, Bismayer U. Pressure-induced phase transition in as a model Pb-based perovskite-type relaxor ferroelectric. Phys Rev Lett. 2008;101: Article no. 017602.
  • Malibert C, Dkhil B, Kiat JM, Durand D, Berar JF, Spasojevic de Bire A. Order and disorder in the relaxor ferroelectric perovskite PbScNbO (PSN): comparison with simple perovskites BaTiO and PbTiO. J Phys Condens Matter. 1997;9(35):7485–7500.
  • Takesue N, Fujii Y, Ichihara M, Chen H. Self-accommodation of ionic size-effect atomic displacements in antiferroelectric order in relaxor lead scandium niobate. Phys Rev Lett. 1999;82(18):3709–3712. doi: 10.1103/PhysRevLett.82.3709
  • Maier B, Mihailova B, Paulmann C, Ihringer J, Gospodinov M, Stosch R, Guettler B, Bismayer U. Effect of local elastic strain on the structure of Pb-based relaxors: a comparative study of pure and Ba- and Bi-doped PbScNbO. Phys Rev B. 2009;79: Article no. 224108.
  • Chaabane B, Kreisel J, Dkhil B, Bouvier P, Mezouar M. Pressure-induced suppression of the diffuse scattering in the model relaxor ferroelectric PbMg/3Nb/3O. Phys Rev Lett. 2003;90:Article no. 257601.
  • Xu G, Zhong Z, Bing Y, Ye Z-G, Shirane G. Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat Mater. 2006;5:134–140. doi: 10.1038/nmat1560
  • Stock C, Xu G, Gehring PM, Luo H, Zhao X, Cao H, Li JF, Viehland D, Shirane G. Neutron and X-ray diffraction study of cubic field-cooled Pb(MgNb)O. Phys Rev B. 2007;76: Article no. 064122.
  • You H, Zhang QM. Diffuse X-ray scattering study of lead magnesium niobate single crystals. Phys Rev Lett. 1997;79(20):3950–3953. doi: 10.1103/PhysRevLett.79.3950
  • Xu G, Shirane G, Copley JRD, Gehring PM. Neutron elastic diffuse scattering study of Pb(Mg. Phys Rev B. 2004;69: Article no. 064112.
  • Stock C, Ellis D, Swainson IP, Xu G, Hiraka H, Zhong Z, Luo H, Zhao X, Viehland D, Birgeneau RJ, Shirane G. Damped soft phonons and diffuse scattering in 40%Pb(MgNb)O-60%PbTiO. Phys Rev B. 2006;73: Article no. 064107.
  • Hlinka J, Kamba S, Petzelt J, Kulda J, Randall C, Zhang SJ. Diffuse scattering in Pb(ZnNb)O with 8% PbTiO by quasi-elastic neutron scattering. J Phys Condens Matter. 2003;15:4249–4257.
  • Xu G, Zhong Z, Bing Y, Ye Z-G, Stock C, Shirane G. Ground state of the relaxor ferroelectric Pb(ZnNb)O. Phys Rev B. 2003;67: Article no. 104102.
  • Welberry TR, Goossens DJ, Gutmann MJ. Chemical origin of nanoscale polar domains in . Phys Rev B. 2006;74: Article no. 224108.
  • Vakhrushev SB, Naberezhnov AA, Okuneva NM, Savenko BN. Determination of polarization vectors in lead magnoniobate. Phys Solid State. 1995;37:1993–1997.
  • Paściak M, Wołcyrz M, Pietraszko A. Interpretation of the diffuse scattering in Pb-based relaxor ferroelectrics in terms of three-dimensional nanodomains of the -directed relative interdomain atomic shifts. Phys Rev B. 2007;76: Article no. 014117.
  • Welberry TR, Goossens DJ. Different models for the polar nanodomain structure of PZN and other relaxor ferroelectrics. J Appl Crystallogr. 2008;41:606–614. doi: 10.1107/S0021889808012491
  • Ganesh P, Cockayne E, Ahart M, Cohen RE, Burton B, Hemley RJ, Ren Y, Yang W, Ye Z-G. Origin of diffuse scattering in relaxor ferroelectrics. Phys Rev B. 2010;81: Article no. 144102. doi: 10.1103/PhysRevB.81.144102
  • Paściak M, Welberry TR, Kulda J, Kempa M, Hlinka J. Polar nanoregions and diffuse scattering in the relaxor ferroelectric PbMgNbO. Phys Rev B. 2012;85: Article no. 224109.
  • Sepliarsky M, Asthagiri A, Phillpot SR, Stachiotti MG, Migoni RL. Atomic-level simulation of ferroelectricity in oxide materials. Curr Opin Solid State Mater Sci. 2005;9:107–113. doi: 10.1016/j.cossms.2006.05.002
  • Sepliarsky M, Wu Z, Asthagiri A, Cohen RE. Atomistic model potential for PbTiO and PMN by fitting first principles results. Ferroelectrics. 2004;301(1):55–59.
  • Sepliarsky M, Cohen RE. First-principles based atomistic modeling of phase stability in PMN-xPT. J Phys Condens Matter. 2011;23(43): Article no. 435902. doi: 10.1088/0953-8984/23/43/435902
  • Tagantsev AK, Vaideeswaran K, Vakhrushev SB, Filimonov AV, Burkovsky RG, Shaganov A, Andronikova D, Rudskoy AI, Baron AQR, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko JH, Setter N. The origin of antiferroelectricity in PbZrO. Nat Commun. 2013;4: Article no. 2229.
  • Ko JH, Gorny M, Majchrowski A, Roleder K, Bussmann-Holder A. Mode softening, precursor phenomena, and intermediate phases in PbZrO. Phys Rev B. 2013;87: Article no. 184110.
  • Hlinka J, Ostapchuk T, Buixaderas E, Kadlec C, Kuzel P, Gregora I, Kroupa J, Savinov M, Klic A, Drahokoupil J, Etxebarria I, Dec J. Multiple soft-mode vibrations of lead zirconate. Phys Rev Lett. 2014;112: Article no. 197601. doi: 10.1103/PhysRevLett.112.197601
  • Paściak M, Welberry TR, Heerdegen AP, Laguta V, Ostapchuka T, Leoni S, Hlinka J. Atomistic modelling of diffuse scattering in cubic PbZrO. Phase Transit. 2015;88:273–282.
  • Gorfman S, Keeble DS, Glazer AM, Long X, Xie Y, Ye ZG, Collins S, Thomas PA. High-resolution X-ray diffraction study of single crystals of lead zirconate titanate. Phys Rev B. 2011;84: Article no. 020102. doi: 10.1103/PhysRevB.84.020102
  • Bokov AA, Long X, Ye Z-G. High-resolution X-ray diffraction study of single crystals of lead zirconate titanate. Phys Rev B. 2010;81: Article no. 172103. doi: 10.1103/PhysRevB.81.172103
  • Baba-Kishi KZ, Welberry TR, Withers RL. An electron diffraction and Monte Carlo simulation study of diffuse scattering in Pb(Zr,Ti)O. J Appl Crystallogr. 2008;41:930–938.
  • Withers RL, Liu Y, Welberry TR. Structured diffuse scattering and the fundamental 1-d dipolar unit in {PLZT} (PbLa)(ZrTi)O (7.5/65/35 and 7.0/60/40) transparent ferroelectric ceramics. J Solid State Chem. 2009;182(2):348–355.
  • Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M. Lead-free piezoceramics. Nature. 2004;432(7013):84–87. doi: 10.1038/nature03028
  • Ge W, Devreugd CP, Phelan D, Zhang Q, Ahart M, Li J, Luo H, Boatner LA, Viehland D, Gehring PM. Lead-free and lead-based ABO perovskite relaxors with mixed-valence A-site and B-site disorder: comparative neutron scattering structural study of (NaBi)TiO and Pb(MgNb)O. Phys Rev B. 2013;88: Article no. 174115.
  • Wakimoto S, Samara GA, Grubbs RK, Venturini EL, Boatner LA, Xu G, Shirane G, Lee SH. Dielectric properties and lattice dynamics of Ca-doped KLiTaO. Phys Rev B. 2006;74: Article no. 054101.
  • Kreisel J, Bouvier P, Dkhil B, Thomas PA, Glazer AM, Welberry TR, Chaabane B, Mezouar M. High-pressure X-ray scattering of oxides with a nanoscale local structure: application to . Phys Rev B. 2003;68: Article no. 014113.
  • Matsubara E, Cohen JB. The G.P. zones in Al–Cu alloys–I. Acta Metall. 1985;33:1945–1955. doi: 10.1016/0001-6160(85)90117-8
  • Thomas P, Trujillo S, Boudard M, Gorfman S, Kreisel J. Diffuse X-ray scattering in the lead-free piezoelectric crystals NaBiTiO and Ba-doped NaBiTiO. Solid State Sci. 2010;12:311–317.
  • Daniels JE, Jo W, Rödel J, Rytz D, Donner W. Structural origins of relaxor behavior in a 0.96(BiNa)TiO30.04BaTiO single crystal under electric field. Appl Phys Lett. 2011;98: Article no. 252904.
  • Liu Y, Withers RL, Welberry TR, Wang H, Du HL. Crystal chemistry on a lattice: the case of BZN and BZN-related pyrochlores. J Solid State Chem. 2006;179:2141–2149. doi: 10.1016/j.jssc.2006.04.017
  • Withers RL, Welberry TR, Larsson A-K, Liu Y, Norén L, Rundlöf H, Brink FJ. Local crystal chemistry, induced strain and short range order in the cubic pyrochlore (BiZn)(ZnNb)O) (BZN). J Solid State Chem. 2004;177:231–244.
  • Rafiq MA, Supancic P, Costa ME, Vilarinho PM, Deluca M. Precise determination of phonon constants in lead-free monoclinic (KNa)NbO single crystals. Appl Phys Lett. 2014;104: Article no. 011902.
  • Deng H, Zhao X, Zhang H, Chen C, Li X, Lin D, Ren B, Jiao J, Luo H. Orientation dependence of electrical properties of large-sized sodium potassium niobate lead-free single crystals. CrystEngComm. 2014;16:2760–2765. doi: 10.1039/c3ce42464b
  • Schiemer J, Withers R, Liu Y, Guo Y, Yi Z, Wang J. Structural disorder in the key lead-free piezoelectric materials, KxNa1-xNbO3 and (1-x)Na0.5Bi0.5TiO3 + xBaTiO(3). Adv Condens Matter Phys. 2013: Article no. 296419.
  • Islam Z, Sinha SK, Haskel D, Lang JC, Srajer G, Veal BW, Haeffner DR, Mook HA. X-ray diffraction study of lattice modulations in an underdoped superconductor. Phys Rev B. 2002;66: Article no. 092501.
  • Izquierdo M, Megtert S, Albouy JP, Avila J, Valbuena MA, Gu G, Abell JS, Yang G, Asensio MC, Comes R. X-ray diffuse scattering experiments from bismuth-based high- superconductors. Phys Rev B. 2006;74: Article no. 054512.
  • Steurer W, Deloudi S. Crystallography of quasicrystals. Berlin: Springer; 2009.
  • de Boissieu M. Phonons, phasons and atomic dynamics in quasicrystals. Chem Soc Rev. 2012;41:6778–6786. doi: 10.1039/c2cs35212e
  • Bak P. Phenomenological theory of icosahedral incommensurate (‘quasiperiodic’) order in Mn-Al alloys. Phys Rev Lett. 1985;54(14):1517–1519. doi: 10.1103/PhysRevLett.54.1517
  • Lubensky TC, Ramaswamy S, Toner J. Hydrodynamics of icosahedral quasicrystals. Phys Rev B. 1985;32:7444–7452. doi: 10.1103/PhysRevB.32.7444
  • Francoual S, Livet F, de Boissieu M, Yakhou F, Bley F, Létoublon A, Caudron R, Gastaldi J. Dynamics of phason fluctuations in the i-AlPdMn quasicrystal. Phys Rev Lett. 2003;91(22): Article no. 225501. doi: 10.1103/PhysRevLett.91.225501
  • Jarić MV, Nelson DR. Diffuse scattering from quasicrystals. Phys Rev B. 1988;37(9):4458–4472. doi: 10.1103/PhysRevB.37.4458
  • Lei J, Wang R, Hu C, Ding D-H. Diffuse scattering from decagonal quasicrystals. Phys Rev B. 1999;59(2):822–828. doi: 10.1103/PhysRevB.59.822
  • Wang R, Hu C, Lei J. Theory of diffuse scattering of quasicrystals due to fluctuations of thermalised phonons and phasons. Phys Status Solidi B. 2001;225(1):21–34. doi: 10.1002/(SICI)1521-3951(200105)225:1<21::AID-PSSB21>3.0.CO;2-T
  • Ishii Y. Phason softening and structural transitions in icosahedral quasicrystals. Phys Rev B. 1992;45(10):5228–5239. doi: 10.1103/PhysRevB.45.5228
  • de Boissieu M, Boudard M, Hennion B, Bellissent R, Kycia S, Goldman A, Janot C, Audier M. Diffuse scattering and phason elasticity in the AlPdMn icosahedral phase. Phys Rev Lett. 1995;75(1):89–92. doi: 10.1103/PhysRevLett.75.89
  • Boudard M, de Boissieu M, Létoublon A, Hennion B, Bellissent R, Janot C. Phason softening in the AlPdMn icosahedral phase. Europhys Lett. 1996;33(3):199–204. doi: 10.1209/epl/i1996-00321-x
  • Weidner E, Frey F, Lei J-L, Pedersen B, Paulmann C, Morgenroth W. Disordered quasicrystals: diffuse scattering in decagonal Al-Ni-Fe. J Appl Crystallogr. 2004;37:802–807. doi: 10.1107/S0021889804017820
  • Schaub P, Weber T, Steurer W. Analysis and modelling of structural disorder by the use of the three-dimensional pair distribution function method exemplified by the disordered twofold superstructure of decagonal Al-Cu-Co. J Appl Crystallogr. 2011;44:134–149. doi: 10.1107/S0021889810044742
  • Leung PW, Henley CL, Chester GV. Dodecagonal order in a two-dimensional Lennard-Jones system. Phys Rev B. 1989;39(1):446–458. doi: 10.1103/PhysRevB.39.446
  • Welberry TR. Optical transform and Monte-Carlo study of phason fluctuations in quasi-periodic tilings. J Appl Crystallogr. 1991;24(3):203–211. doi: 10.1107/S0021889890013875
  • Ma Y, Stern E, Li X, Janot C. Patterson analysis of aperiodic crystals. Phys Rev B. 1989;40(11):8053–8056. doi: 10.1103/PhysRevB.40.8053
  • Weber T, Kobas M, Steurer W. The disordered 8 Ångstrom superstructure of a decagonal AlCoNi quasicrystal. Ferroelectrics. 2004;305:213–216.
  • Kitaigorodskii AI. Molecular crystals and molecules. New York: Academic Press; 1973.
  • Epstein J, Welberry TR, Jones RDG. Analysis of the diffuse X-ray scattering from substitutionally disordered molecular crystals: monoclinic 9-bromo-10-methylanthracene. Acta Crystallogr A. 1982;38:611–618. doi: 10.1107/S0567739482001272
  • Epstein J, Welberry TR. Least-squares analyses of diffuse scattering from substitutionally disordered molecular crystals: application to 2,3-dichloro-6,7-dimethylanthracene. Acta Crystallogr A. 1983;39:882–892. doi: 10.1107/S0108767383001774
  • Reynolds PA. Orientational disorder in hexachlorobenzene crystals. Acta Crystallogr A. 1975;31:386–387. doi: 10.1107/S0567739475000812
  • Reynolds PA. A calculation of the molecular orientational disorder in crystalline anthrone. Acta Crystallogr A. 1975;31:80–83. doi: 10.1107/S0567739475000150
  • Welberry TR, Siripitayananon J. Analysis of the diffuse scattering from disordered molecular crystals: application to 1,4-dibromo-2,5-diethyl-3,6-dimethylbenzene at 295 K. Acta Crystallogr B. 1986;42:262–272. doi: 10.1107/S0108768186098245
  • Welberry TR, Siripitayananon J. Analysis of the diffuse scattering from disordered molecular crystals: application to 1,3-dibromo-2,5-diethyl-4,6-dimethylbenzene at 295 K. Acta Crystallogr B. 1987;43:97–106. doi: 10.1107/S0108768187098239
  • Goossens DJ, Heerdegen AP, Chan EJ, Welberry TR. Monte Carlo modelling of diffuse scattering from single crystals: the program ZMC. Metall Mater Trans A. 2011;42A:23–31. doi: 10.1007/s11661-010-0199-1
  • Welberry TR, Goossens DJ, Edwards AJ, David WIF. Diffuse X-ray scattering from benzil, : analysis via automatic refinement of a Monte Carlo model. Acta Crystallogr A. 2001;57:101–109.
  • Welberry TR, Heerdegen AP. Diffuse X-ray scattering from -dimethoxybenzil, : analysis via automatic refinement of a Monte Carlo model. Acta Crystallogr B. 2003;59:760–769.
  • Goossens D, Welberry T, Heerdegen A, Edwards A. Modelling disorder in 3,3'-dimethoxybenzil, C16H14O4. Z Kristallogr. 2005;220:1035–1042.
  • Cailleau H, Moussa F, Mons J. Incommensurate phases in biphenyl. Solid State Commun. 1979;31(7):521–524. doi: 10.1016/0038-1098(79)90454-X
  • Baudour JL, Délugeard Y, Rivet P. Structural phase transition in polyphenyls. VI. Crystal structure of the low-temperature ordered phase of p-quaterphenyl at 110 K. Acta Crystallogr B. 1978;34:625–628. doi: 10.1107/S0567740878003647
  • Saito K, Yamamura Y, Saitoh H, Matsuyama H, Kikuchi K, Ikemoto I. Phase transition in crystalline p-polyphenyls: heat capacity of 4,4-difluoro-p-quaterphenyl. Solid State Commun. 1994;92:495–499. doi: 10.1016/0038-1098(94)90485-5
  • Delugeard Y, Desuche J, Baudour JL. Structural transition in polyphenyls. II. The crystal structure of the high-temperature phase of quaterphenyl. Acta Crystallogr B. 1976;32:702–705. doi: 10.1107/S0567740876003828
  • Baudour JL. Structural phase transition in polyphenyls. X. Potential barrier heights in crystalline polyphenyls and in gaseous biphenyl determined uniquely from diffraction data. Acta Crystallogr B. 1991;47:935–949. doi: 10.1107/S0108768191004950
  • Welberry TR, Mair SL. X-ray diffuse scattering study of spatial correlations in para-terphenyl. J Phys C: Solid State Phys. 1987;20:4773–4781. doi: 10.1088/0022-3719/20/29/014
  • Baranyai A, Welberry TR. Molecular dynamics simulation of solid biphenyl. Mol Phys. 1991;73:1317–1334. doi: 10.1080/00268979100101941
  • Baranyai A, Welberry TR. Molecular dynamics simulation study of solid polyphenyls: structures determined by the interplay between intra- and intermolecular forces. Mol Phys. 1992;75:867–879. doi: 10.1080/00268979200100661
  • Goossens DJ, Gutmann MJ. Revealing how interactions lead to ordering in Para-terphenyl. Phys Rev Lett. 2009;102: Article no. 015505. doi: 10.1103/PhysRevLett.102.015505
  • Goossens DJ, Beasley AG, Welberry TR, Gutmann MJ, Piltz RO. Neutron diffuse scattering in deuterated para-terphenyl, CD. J Phys Condens Matter. 2009;21: Article no. 124204.
  • Forst R, Jagodzinski H, Boysen H, Frey F. The disordered crystal structure of urea inclusion compounds OC(. Acta Crystallogr B. 1990;46:70–78.
  • Weber T, Boysen H, Frey F. Longitudinal positional ordering of n-alkane molecules in urea inclusion compounds. Acta Crystallogr B. 2000;56:132–141. doi: 10.1107/S0108768199010617
  • Welberry TR, Mayo SC. Diffuse X-ray scattering and Monte-Carlo study of guest–host interactions in urea inclusion compounds. J Appl Crystallogr. 1996;29:353–364. doi: 10.1107/S0021889895017158
  • Lefort R, Toudic B, Etrillard J, Guillaume F, Bourges P, Currat R, Breczewski T. Dynamical molecular disorder and diffuse scattering in an alkane/urea incommensurate inclusion compound. Eur Phys J B. 2001;24:51–57. doi: 10.1007/s100510170021
  • Huard M, Toudic B, Rabiller P, Ecolivet C, Guérin L, Bourges P, Breczewski T, Hollingsworth MD. Confined linear molecules inside an aperiodic supramolecular crystal: the sequence of superspace phases in n-hexadecane/urea. J Chem Phys. 2011;135(20): Article no. 204505. doi: 10.1063/1.3663711
  • König O, Bürgi H, Armbruster T, Hulliger J, Weber T. A study in crystal engineering: structure, crystal growth, and physical properties of a polar perhydrotriphenylene inclusion compound. J Amer Chem Soc. 1997;119(44):10632–10640. doi: 10.1021/ja971945s
  • Mayo SC, Proffen T, Bown M, Welberry TR. Diffuse scattering and Monte Carlo simulations of cyclohexane-perhydrotriphenylene (PHTP) inclusion compounds, CH/CH. J Appl Crystallogr. 1999;32:464–471.
  • Weber T, Estermann MA, Burgi H-B. Structural complexity of a polar perhydrotriphenylene inclusion compound brought to light by synchrotron radiation. Acta Crystallogr B. 2001;57:579–590. doi: 10.1107/S0108768101005468
  • Weber T, Burgi H-B. Determination and refinement of disordered crystal structures using evolutionary algorithms in combination with Monte Carlo methods. Acta Crystallogr A. 2002;58:526–540. doi: 10.1107/S0108767302012114
  • Burgi HB, Hauser J, Weber T, Neder RB. Supramolecular architecture in a disordered perhydrotriphenylene inclusion compound from diffuse X-ray diffraction data. Cryst Growth Des. 2005;5(6):2073–2083. doi: 10.1021/cg050211l
  • Falconi S, McMahon MI, Lundegaard LF, Hejny C, Nelmes RJ, Hanfland M. X-ray diffraction study of diffuse scattering in incommensurate rubidium-iv. Phys Rev B. 2006;73:214102.
  • Bonin M, Welberry TR, Hostettler M, Gardon M, Birkedal H, Chapuis G, Möckli P, Ogle CA, Schenk KJ. Urotropin azelate: a rather unwilling co-crystal. Acta Crystallogr B. 2003;59:72–86. doi: 10.1107/S0108768102022164
  • Hostettler M, Birkedal H, Gardon M, Chapuis G, Schwarzenbach D, Bonin M. Phase-transition-induced twinning in the 1:1 adduct of hexamethylenetetramine and azelaic acid. Acta Crystallogr B. 1999;55:448–458. doi: 10.1107/S0108768198017200
  • Goossens DJ, Heerdegen AP, Welberry TR. X-ray diffuse scattering from HMTA: analysis via a Monte Carlo model. Acta Crystallogr B. 2008;64:456–465. doi: 10.1107/S0108768108010604
  • Goossens DJ, Heerdegen AP, Welberry TR, Beasley AG. The molecular conformation of Ibuprofen, C13H18O2, through X-ray diffuse scattering. Int J Pharm. 2007;343:59–68. doi: 10.1016/j.ijpharm.2007.04.023
  • Chan EJ, Goossens DJ. Study of the single-crystal X-ray diffuse scattering in paracetamol polymorphs. Acta Crystallogr B. 2012;68:80–88. doi: 10.1107/S0108768111046295
  • Chan EJ, Welberry TR, Goossens DJ, Heerdegen AP. A refinement strategy for Monte Carlo modelling of diffuse scattering from molecular crystal systems. J Appl Crystallogr. 2010;43:913–915. doi: 10.1107/S0021889810022260
  • Beasley AG, Welberry TR, Goossens DJ, Heerdegen AP. A room-temperature X-ray diffuse scattering study of form (II) of the trimorphic molecular system p-(N-methylbenzylidene)-p-methylaniline. Acta Crystallogr B. 2008;64:633–643. doi: 10.1107/S0108768108023264
  • Chan EJ, Rae AD, Welberry TR. On the polymorphism of benzocaine; a low-temperature structural phase transition for form (II). Acta Crystallogr B. 2009;65:509–515. doi: 10.1107/S0108768109018898
  • Chan EJ, Welberry TR. Precursor effects of the orthorhombic to monoclinic phase transition in benzocaine form (II) revealed by X-ray diffuse scattering. Acta Crystallogr B. 2010;66:260–270. doi: 10.1107/S0108768110001527
  • Bond AD, Boese R, Desiraju GR. On the polymorphism of aspirin. Angew Chem Int Ed. 2007;46:615–617. doi: 10.1002/anie.200602378
  • Bond AD, Boese R, Desiraju GR. On the polymorphism of aspirin: crystalline aspirin as intergrowths of two ‘polymorphic’ domains. Angew Chem Int Ed. 2007;46:618–622. doi: 10.1002/anie.200603373
  • Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. C60: buckminsterfullerene. Nature. 1985;318:162–163. doi: 10.1038/318162a0
  • Launois P, Ravy S, Moret R. Diffuse scattering and orientational correlations in solid . Phys Rev B. 1995;52:5414–5425.
  • Michel KH, Lamoen D, David WIF. Orientational order and disorder in solid : theory and diffraction experiments. Acta Crystallogr A. 1995;51:365–374.
  • Ravy S, Launois P, Moret R. Analysis of the X-ray diffuse scattering in from microscopic models. Phys Rev B. 1996;53:R10532–R10535.
  • Launois P, Ravy S, Moret R. Tests of current models of intermolecular potentials against X-ray diffuse scattering in . Phys Rev B. 1997;55:2651–2665.
  • Launois P, Ravy S, Moret RE. Tests of current models of intermolecular potentials against X-ray diffuse scattering in [Phys. Rev. B 55, 2651 (1997)]. Phys Rev B. 1997;56:7019–7021
  • Pintschovius L. Diffuse scattering from fullerenes. Phase Transit. 1998;67:295–318. doi: 10.1080/01411599808219198
  • Glover ID, Harris GW, Helliwell JR, Moss DS. The variety of X-ray diffuse scattering from macromolecular crystals and its respective components. Acta Crystallogr B. 1991;47:960–968. doi: 10.1107/S0108768191004585
  • Boylan D, Phillips GN Jr. Motions of tropomyosin characterization of anisotropic motions and coupled displacements in crystals. Biophys J. 1986;49:76–78. doi: 10.1016/S0006-3495(86)83599-8
  • Chacko S, Phillips GNJ. Diffuse X-ray scattering from tropomyosin crystals. Biophys J. 1992;61:1256–1266. doi: 10.1016/S0006-3495(92)81934-3
  • Caspar DLD, Clarage J, Salunke DM, Clarage M. Liquid-like movements in crystalline insulin. Nature. 1988;332:659–662. doi: 10.1038/332659a0
  • Clarage JB, Clarage MS, Phillips WC, Sweet RM, Caspar DLD. Correlations of atomic movements in lysozyme crystals. Proteins Struct Funct Bioinf. 1992;12:145–157. doi: 10.1002/prot.340120208
  • Doucet J, Benoit JP. Molecular dynamics studied by analysis of the X-ray diffuse scattering from lysozyme crystals. Nature. 1987;325:643–646. doi: 10.1038/325643a0
  • Doucet J, Benoit J-P, Cruse WBT, Prange T, Kennard O. Coexistence of A- and B-form DNA in a single crystal lattice. Nature. 1989;337:190–192. doi: 10.1038/337190a0
  • Helliwell J, Glover I, Jones A, Pantos E, Moss D. Protein dynamics use of computer-graphics and protein crystal diffuse-scattering recorded with synchrotron X-radiation. Biochem Soc Trans. 1986;14:653–655.
  • Mizuguchi K, Kidera AGN. Collective motions in proteins investigated by X-ray diffuse scattering. Proteins Struct Funct Bioinf. 1994;18:34–48. doi: 10.1002/prot.340180106
  • Faure P, Micu A, Perahia D, Doucet J, Smith JC, Benoit JP. Correlated intramolecular motions and diffuse-X-ray scattering in lysozyme. Nat Struct Biol. 1994;1:124–128. doi: 10.1038/nsb0294-124
  • Kolatkar AR, Clarage JB, Phillips GN Jnr. Analysis of diffuse scattering from yeast initiator tRNA crystals. Acta Crystallogr D. 1994;50:210–218. doi: 10.1107/S0907444993011692
  • Clarage JB, Romo T, Andrews BK, Pettitt BM, Phillips GN. A sampling problem in molecular dynamics simulations of macromolecules. Proc Natl Acad Sci. 1995;92:3288–3292. doi: 10.1073/pnas.92.8.3288
  • Wall ME, Clarage JB, Philips GN Jr. Motions of calmodulin characterized using both Bragg and diffuse X-ray scattering. Structure. 1997;5:1599–1612. doi: 10.1016/S0969-2126(97)00308-0
  • Wall ME, Ealick SE, Gruner SM. Three-dimensional diffuse X-ray scattering from crystals of staphylococcal nuclease. Proc Natl Acad Sci. 1997;94:6180–6184. doi: 10.1073/pnas.94.12.6180
  • Héery S, Genest D, Smith JC. X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation. J Mol Biol. 1998;279:303–319. doi: 10.1006/jmbi.1998.1754
  • Moss DS, Harris GW, Wostrack A, Sansom C. Diffuse X-ray scattering from molecular crystals. Crystallogr Rev. 2003;9:229–277. doi: 10.1080/08893110310001643551
  • Meinhold L, Smith JC. Fluctuations and correlations in crystalline protein dynamics: a simulation analysis of staphylococcal nuclease. Biophys J. 2005;88:2554–2563. doi: 10.1529/biophysj.104.056101
  • Meinhold L, Smith JC. Correlated dynamics determining X-ray diffuse scattering from a crystalline protein revealed by molecular dynamics simulation. Phys Rev Lett. 2005;95:218103. doi: 10.1103/PhysRevLett.95.218103
  • Meinhold L, Smith JC. Protein dynamics from X-ray crystallography: anisotropic, global motion in diffuse scattering patterns. Proteins Struct Funct Bioinf. 2007;66:941–953. doi: 10.1002/prot.21246
  • Meinhold L, Merzel F, Smith JC. Lattice dynamics of a protein crystal. Phys Rev Lett. 2007;99:138101. doi: 10.1103/PhysRevLett.99.138101
  • Moore PB. On the relationship between diffraction patterns and motions in macromolecular crystals. Structure. 2009;17:1307–1315. doi: 10.1016/j.str.2009.08.015
  • Riccardi D, Cui Q, Philips GN Jr. Evaluating elastic network models of crystalline biological molecules with temperature factors, correlated motions, and diffuse X-ray scattering. Biophys J. 2010;99:2616–2625. doi: 10.1016/j.bpj.2010.08.013
  • Wall ME, Van Benschoten AH, Sauter NK, Adams PD, Fraser JS, Terwilliger TC. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering. Proc Natl Acad Sci. 2014;111:17887–17892. doi: 10.1073/pnas.1416744111
  • Wall ME, Adams PD, Fraser JS, Sauter NK, Nicholas K. Diffuse X-ray scattering to model protein motions. Structure. 2014;22:182–184. doi: 10.1016/j.str.2014.01.002
  • Chaudhry C, Horwich AL, Brunger AT, Adams PD. Exploring the structural dynamics of the E. coli Chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states. J Mol Biol. 2004;342:229–245. doi: 10.1016/j.jmb.2004.07.015
  • van den Bedem H, Bhabha G, Yang K, Wright PE, Fraser JS. Automated identification of functional dynamic contact networks from X-ray crystallography. Nat Methods. 2013;10:896–902. doi: 10.1038/nmeth.2592
  • Wilson MA. Visualizing networks of mobility in proteins. Nat Methods. 2013;10:835–837. doi: 10.1038/nmeth.2606
  • Burnley BT, Afonine PV, Adams PD, Gros P. Modelling dynamics in protein crystal structures by ensemble refinement. eLife. 2012;1. doi: 10.7554/eLife.00311
  • Welberry TR, Heerdegen AP, Goldstone DC, Taylor IA. Diffuse scattering resulting from macromolecular frustration. Acta Crystallogr B. 2011;67:516–524. doi: 10.1107/S0108768111037542
  • Welberry TR, Heerdegen A, Carr PD. Aperiodic crystals reverse Monte Carlo study of diffuse scattering from a frustrated protein system. Springer; 2013. Chapter 33; p. 243–251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.