501
Views
18
CrossRef citations to date
0
Altmetric
Articles

The way from isostructurality to polymorphism. Where are the borders? The role of supramolecular interactions and crystal symmetries

Pages 118-151 | Received 01 Aug 2016, Accepted 19 Oct 2016, Published online: 28 Nov 2016

References

  • Bernstein J. Polymorphism in molecular crystals. In: IUCr monographs on crystallography 14. Oxford: Oxford Science Publications, Clarendon Press; 2002. p. 2–256.
  • Groom CR, Bruno IJ, Lightfoot MP. The Cambridge Structural Database. Acta Crystallogr B. 2016;72:171–179. doi: 10.1107/S2052520616003954
  • Desiraju GR. Some challenges in crystal engineering. Lecture at Conference Indaba5: Models, Mysteries and Magic of Molecules. Kruger Park, South Africa; 2006 Aug.
  • Price SL. Why don’t we find more polymorphs? Acta Crystallogr B. 2013;69:313–328. doi: 10.1107/S2052519213018861
  • Hilfiker R, Blatter F, von Raumer M. Relevance of solid-state properties for pharmaceutical products. In: Hilfiker R, editor. Polymorphism in the pharmaceutical industry. Weinheim: Wiley; 2006.
  • Gorbitz CH, Hersleth HP. On the inclusion of solvent molecules in the crystal structures of organic compounds. Acta Crystallogr B. 2000;56:526–534. doi: 10.1107/S0108768100000501
  • Lehn JM. Supramolecular chemistry – Scope and perspectives molecules, supermolecules, and molecular devices. Angew Chem Int Ed Engl. 1988;27:89–112. doi: 10.1002/anie.198800891
  • Desiraju GR. Chemistry beyond the molecule. Nature. 2001;412:397–400. doi: 10.1038/35086640
  • Nangia A. Molecular conformation and crystal lattice energy factors in conformational polymorphs. In: Boeyens JCA, Ogilvie JF, editors. Models, mysteries and magic of molecules. Dordrecht: Springer; 2008. p. 63–86.
  • Bernstein J, Davey RJ, Henck JO. Concomitant polymorphs. Angew Chem Int Ed Engl. 1999;38:3440–3461. doi: 10.1002/(SICI)1521-3773(19991203)38:23<3440::AID-ANIE3440>3.0.CO;2-#
  • Braga D, Grepioni F. Polymorphism, crystal transformations and gas–solid reactions. In: Desiraju GR, editor. Crystal design: structure and function. Perspectives in supramolecular chemistry. Vol. 7. Weinheim: Wiley; 2003.
  • Cruz-Cabeza AJ, Bernstein J. Conformational polymorphism. Chem Rev. 2014;114:2170–2191. doi: 10.1021/cr400249d
  • Threlfall TL, Gelbrich T. The crystal structure of methyl paraben at 118 K does not represent a new polymorph. Cryst Growth Des. 2007;7:2297–2297. doi: 10.1021/cg0700871
  • Steed KM, Steed JW. Packing problems: high Z′ crystal structures and their relationship to cocrystals, inclusion compounds, and polymorphism. Chem Rev. 2015;115:2895–2933. doi: 10.1021/cr500564z
  • Anderson KM, Afarinkia K, Yu HW, et al. When Z′ = 2 is better than Z′ = 1 supramolecular centrosymmetric hydrogen-bonded dimers in chiral systems. Cryst Growth Des. 2006;6:2109–2113. doi: 10.1021/cg0603265
  • Desiraju GR. On the presence of multiple molecules in the crystal asymmetric unit (Z′>1). Cryst Eng Comm. 2007;9:91–92. doi: 10.1039/B614933B
  • Taylor R, Cole JC, Groom CR. Molecular interactions in crystal structures with Z′>1. Cryst Growth Des. 2016;16:2988–3001. doi: 10.1021/acs.cgd.6b00355
  • Kálmán A, Párkányi L, Argay G. Classification of the isostructurality of organic molecules in the crystalline state. Acta Crystallogr. 1993;49:1039–1049. doi: 10.1107/S010876819300610X
  • Kálmán A, Párkányi L. Isostructurality of organic crystals. In: Hargittai M, Hargittai I, editors. Advances in molecular structure research, vol. 3. Greenwich: JAI Press; 1997. p. 189–226.
  • Kálmán A. In: Gans W, editor. Fundamental principles of molecular modeling. New York: Plenum Press; 1996.
  • Fábián L, Kálmán A. Volumetric measure of isostructurality. Acta Crystallogr. 1999;55:1099–1108. doi: 10.1107/S0108768199009325
  • Kitaigorodskii AI. Organic chemical crystallography. New York: Consultant Bureau; 1961.
  • Threlfall TL. Analysis of organic polymorphs. A review. Analyst. 1995;120:2435–2360. doi: 10.1039/an9952002435
  • Desiraju GR. Polymorphism: the same and not quite the same. Cryst Growth Des. 2008;8:3–5. doi: 10.1021/cg701000q
  • Bernstein J, Dunitz JD, Gavezzotti A. Polymorphic perversity: crystal structures with many symmetry-independent molecules in the unit cell. Cryst Growth Des. 2008;8:2011–2018. doi: 10.1021/cg7011974
  • Buerger MJ, Bloom MC. Crystal polymorphism. Z Kristallogr. 1937;A96:182–200.
  • Weber E, Seichter W, Skobridis K, et al. Silicon analogues of triarylmethanol hosts. Inclusion properties and host–guest structures: a comparative study. J Incl Phenom and Macrocyclic Chem. 2006;55:131–149. doi: 10.1007/s10847-005-9029-2
  • Bourne SA, Johnson L, Marais C, et al. Complexation with hydroxy host compounds. Part. 4. Structures and thermal stabilities of inclusion compounds with dioxane as the guest. J Chem Soc Perkin Trans. 1991;2:1707–1713. doi: 10.1039/p29910001707
  • Weber E, Skobridis K, Goldberg I. Specific entrapment of methanol and dimethyl sulphoxide (DMSO) by a simple host compound (triphenylmethanol). Crystal structures of the Ph3COH·MeOH (1:1) and Ph3COH·DMSO (2:1) clathrate inclusion complexes. Chem Commun. 1989;1195–1197. doi: 10.1039/C39890001195
  • Bhatt PM, Desiraju GR. Tautomeric polymorphism in omeprazole. Chem Comm. 2007;2057–2059. doi: 10.1039/b700506g
  • Madarász J, Bombicz P, Czugler M, et al. Comparative evolved gas analytical and structural study on trans-Diammine-Bis(nitrito)-Palladium(II) and Platinum(II) by TG/DTA-MS, TG-FTIR, and single crystal X-ray diffraction. Thermochim Acta. 2009;490:51–59. doi: 10.1016/j.tca.2009.02.006
  • Mishra MK, Ramamurty U, Desiraju GR. Solid solution hardening of molecular crystals: tautomeric polymorphs of omeprazole. J Am Chem Soc. 2015;137:1794–1797. doi: 10.1021/ja512817f
  • Hollό B, Leovac VM, Bombicz P, et al. Synthesis, structural, DFT and cytotoxicity studies of Cu(II) and Ni(II) complexes with 3-aminopyrazole derivatives. Aust J Chem. 2010;63:1557–1564. doi: 10.1071/CH10210
  • Lozano V, Moers O, Jones PG, et al. Polysulfonylamines, CLXIX [1]. Intermolecular interactions in crystalline Di(organosulfonyl)-amines. Part 1. Di(4-bromobenzenesulfonyl)amine: two conformational polymorphs and the structural relationship of one polymorph to the corresponding 2,4-Dimethylpyridinium salt. Z Naturforsch B: Chem Sci. 2004;59:661–672.
  • van Mechelen JB, Peschar R, Schenk H. Structures of mono-unsaturated triacylglycerols. IV. The highest melting [beta]'-2 polymorphs of trans-mono-unsaturated triacylglycerols and related saturated TAGs and their polymorphic stability. Acta Crystallogr. 2008;64:249–259. doi: 10.1107/S0108768108004825
  • Pan H, Liu P, Li Y, et al. Unique polymorphism of oligothiophenes. Adv Mater. 2007;19:3240–3243. doi: 10.1002/adma.200602870
  • Hegedűs B, Bod P, Harsányi K, et al. Comparison of the polymorphic modifications of famotidine. J Pharm Biomed. 1989;7:563–569. doi: 10.1016/0731-7085(89)80221-3
  • Ferenczy GG, Párkányi L, Ángyán JG, et al. Crystal and electronic structure of two polymorphic modifications of famotidine. An experimental and theoretical study. J Mol Struct Theochem. 2000;503:73–79. doi: 10.1016/S0166-1280(99)00364-4
  • Kálmán A, Fábián L, Argay G, et al. Different forms of antiparallel stacking of hydrogen-bonded antidromic rings in the solid state: polymorphism with virtually the same unit cell and two-dimensional isostructurality with alternating layers. Acta Crystallogr B. 2004;60:755–762. doi: 10.1107/S0108768104024553
  • Bombicz P, Czugler M, Tellgren R, et al. A classical example of a disappearing polymorph and the shortest intermolecular H···H separation ever found in an organic crystal structure. Angew Chem Int Ed. 2003;42:1957–1960.
  • Holczbauer T, Fábián L, Csomós P, et al. Annular desmotropy of three pairs of seven-membered heterocycles confirmed by X-ray crystallography. Cryst Eng Comm. 2010;12:1712–1717. doi: 10.1039/b925635k
  • Molnár P, Bombicz P, Varga C, et al. Influence of an achiral additive on the resolution of ibuprofen by supercritical fluid extraction. Chirality. 2009;21:628–636. doi: 10.1002/chir.20655
  • Bereczki L, Pálovics E, Bombicz P, et al. Optical resolution of N-formylphenylalanine succeeds by crystal growth rate differences of diastereomeric salts. Tetrahedron Asymmetry. 2007;18:260–264. doi: 10.1016/j.tetasy.2007.01.029
  • Báthori NB, Bombicz P, Bourne SA, et al. Investigation of sublimation with and without dissociation in the chloride and nitrate salts of 4-(1-hydroxy-1,2-diphenylethyl)pyridine. New J Chem. 2010;34:405–413. doi: 10.1039/B9NJ00411D
  • Fábián L, Kálmán A, Argay G, et al. Two polymorphs of a -lactam (trans-13-azabicyclo[10.2.0]tetradecan-14-one). Concomitant crystal polymorphism and isostructurality. Chem Comm. 2004;2114–2115. doi: 10.1039/B408505A
  • Kálmán A, Fábián L, Argay G, et al. Dipole-induced polymorphs of trans-2-hydroxycycloheptanecarboxylic acid with virtually the same unit cell. J Am Chem Soc. 2003;125:34–35. doi: 10.1021/ja0289447
  • Kálmán A, Fábián L, Argay G, et al. Crystal engineering with alicyclic -amino acids: construction of hydrogen-bonded bilayers. Cryst Growth Des. 2005;5:773–782. doi: 10.1021/cg0497997
  • Bond AD, Boese R, Desiraju GR. On the polymorphism of aspirin: crystalline aspirin as intergrowths of two “polymorphic” domains. Angew Chem Int Ed. 2007;46:618–622.
  • Fábián L, Kálmán A. Isostructurality in one and two dimensions: isostructurality of polymorphs. Acta Crystallogr. 2004;60:547–558. doi: 10.1107/S0108768104015113
  • Kálmán A, Fábián L. Structural similarities in tetraaryltins described by virtual non-crystallographic rotations or translations: Kitaigorodskii’s morphotropism is revisited. Acta Crystallogr. 2007;63:411–417. doi: 10.1107/S0108768107010968
  • Bombicz P, Báthori NB, Kálmán A. Symmetry-controlled rearrangements in Piedfort Units (PU) of 2,4,6-triaryloxy-1,3,5-triazines. Struct Chem. 2015;26:1611–1619. doi: 10.1007/s11224-015-0659-8
  • Fábián L, Bombicz P, Czugler M, et al. Clathrate engineering of piedfort hosts. Crystal structures and molecular modeling of the para-mono- and meta-di-methy1/t-buty1 substituted derivatives of 2,4,6-tris (alkylphenoxy)-1,3,5-triazine. Supramol Chem. 1999;11:151–167. doi: 10.1080/10610279908048726
  • Gruber T, Weber E, Seichter W, et al. Versatile inclusion behavior of a dinitrocalix[4]arene having two ester pendants – preparation and X-ray crystal structures of complexes. Supramol Chem. 2006;18(6):537–547. doi: 10.1080/10610270600847040
  • Gruber T, Peukert M, Schindler D, et al. Crystalline inclusion compounds of lower rim propyl substituted calix[4]arenes featuring different number and positions of the modifying groups. J Incl Phenom and Macrocyclic Chem. 2008;62:311–324. doi: 10.1007/s10847-008-9473-x
  • Gruber T, Bombicz P, Seichter W, et al. X-ray crystal structures and isostructurality calculation of calix[4]arenes with lower rim propyl and carboxylic acid or mixed carboxylic acid and ester substituents involving solvent complexes with methanol and ethanol. J Struct Chem. 2009;50:522–531. doi: 10.1007/s10947-009-0080-5
  • Gruber T, Gruner M, Fischer C, et al. Conformational behaviour and first crystal structures of a calix[4]arene featuring a laterally positioned carboxylic acid function in unsolvated and solvent complexed forms. New J Chem. 2010;34:250–259. doi: 10.1039/b904489b
  • Gruber T, Fischer C, Seichter W, et al. Upper rim site lipophilic calix[4]arenes as receptors for natural terpenes and functionally related solvent molecules: combined crystal structure and QMB sensor study. Cryst Eng Comm. 2011;13:1422–1431. doi: 10.1039/C0CE00696C
  • Fischer C, Lin G, Bombicz P, et al. 2-Ethyl-5,11,17,23-tetra-tert-butyl-25,26,27,28-tetramethoxy-calix[4]arene: comparative X-ray study and isostructurality calculation of guest free and solvate structures. Chemical straightening of guest channels. Struct Chem. 2011;22:433–439. doi: 10.1007/s11224-011-9746-7
  • Fischer C, Bombicz P, Lin G, et al. Bridge-disubstituted calix[4]arenes in the rare 1,2-alternate conformation –How two lateral substituents influence supramolecular properties. Cryst Growth Des. 2012;12:2445–2454. doi: 10.1021/cg3000735
  • Fischer C, Bombicz P, Seichter W, et al. Fine-tuning of packing architecture: symmetrically bridge-disubstituted tetramethoxycalix[4]arenes. Struct Chem. 2013;24:535–541. doi: 10.1007/s11224-012-0104-1
  • Bombicz P, Gruber T, Fischer C, et al. Fine tuning of crystal architecture by intermolecular interactions: synthon engineering. Cryst Eng Comm. 2014;16:3646–3654. doi: 10.1039/c3ce42387e
  • Resnati G, Boldyreva E, Bombicz P, Kawano M. Supramolecular interactions in the solid state. IUCJ 2015;2:675–690.
  • Gruner M, Fischer C, Gruber T, et al. Structural conditions required for the bridge lithiation and substitution of a basic calix[4]arene. Supramol Chem. 2010;22:256–266. doi: 10.1080/10610270903437044
  • Desiraju GR. Crystal engineering and IUCrJ. IUCrJ. 2016;3:1–2. doi: 10.1107/S2052252515024100
  • Thakur TS, Dubey R, Desiraju GR. Crystal structure and prediction. Annu Rev Phys Chem. 2015;66:21–42. doi: 10.1146/annurev-physchem-040214-121452

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.