87
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Introduction to crystallographic refinement of macromolecular atomic models. Addendum

ORCID Icon & ORCID Icon
Pages 51-55 | Received 07 Nov 2019, Accepted 13 Nov 2019, Published online: 03 Dec 2019

References

  • Urzhumtsev A, Lunin VY. Introduction to crystallographic refinement of macromolecular atomic models. Crystallogr Rev. 2019;25:164–262. doi: 10.1080/0889311X.2019.1631817
  • Franklin R. Influence of the bonding electrons on the scattering of X-rays by carbon. Nature. 1950;A34:909–921.
  • Coppens P. The structure factor. In: Shmueli U, editor. International Tables for Crystallography, vol. B. Dordrecht, the Netherlands: Kluwer Academic Publishers; 2010. p. 10–23.
  • Kurki-Suonio K. Al’ternativnaya filosofiya zaryadovoj plotnosti [Alternative philosophy of charge density]. In: Simonov VI, Vainshtein BK, Pikin SA, Chernov AA, Shuvalov LA, Udalova VV, editors. Structurnye issledovaniya kristallov [Structural studies of crystals]. Moscow (URSS): Nauka, Fizmatlit; 1996; p. 46–64. Russian.
  • Authier A. Early days of X-ray crystallography. Oxford (UK): Oxford University Press; 2013; p. 231–232.
  • Bragg WH. The intensity of X-ray reflection in diamonds. Proc. Phys. Sci. London. 1920;33:304–311. doi: 10.1088/1478-7814/33/1/331
  • Ewald PP. Fifty years of X-ray diffractions. Utrecht (The Neverland): N.V.A. International Union of Crystallography; Oosthoek’s Uitgeversmaatschappij; 1962; p. 460.
  • Brill R, Grimm HG, Hermann C, et al. Anwendung der röntgenographischen Fourieranalyse auf Fragen der chemischen Bindung [Application of X-ray Fourier analysis to questions of chemical bonding]. Ann Phys. 1939;34:393–445. German. doi: 10.1002/andp.19394260502
  • Brill R. The covalent bond in diamond and the X-ray scattering factor of covalent-bonded carbon. Acta Crystallogr. 1950;3:333–337. doi: 10.1107/S0365110X50000951
  • Ewald PP, Hönl H. Die Röntgeninterferenzen an Diamant als wellenmechanisches Problem. Teil I [X-ray interference in diamonds as problem of wave mechanics. Part I]. Ann Phys. 1936;25:281–308. German. doi: 10.1002/andp.19364170402
  • Ewald PP, Hönl H. Die Röntgeninterferenzen an Diamant als wellenmechanisches Problem. Teil II: Unterschung linearer Atomketten [X-ray interference in diamonds as problem of wave mechanics. Part II analysis of linear atomic chains]. Ann Phys. 1936;26:673–696. German. doi: 10.1002/andp.19364180802
  • McWeeny R. X-ray scattering by aggregates of bonded atoms. I. Analytical approximations in single-atom scattering. Acta Crystallogr. 1951;4:513–519. doi: 10.1107/S0365110X51001732
  • McWeeny R. X-ray scattering by aggregates of bonded atoms. II. The effect of the bonds: with an application to H2. Acta Crystallogr. 1952;5:463–468. doi: 10.1107/S0365110X52001350
  • McWeeny R. X-ray scattering by aggregates of bonded atoms. III. The bond scattering factor: simple method of approximation in the general case. Acta Crystallogr. 1953;6:631–637. doi: 10.1107/S0365110X53001757
  • McWeeny R. X-ray scattering by aggregates of bonded atoms. IV. Application to the carbon atom. Acta Crystallogr. 1954;7:180–186. doi: 10.1107/S0365110X54000515
  • Kurki-Suonio K. On the information about deformations of the atoms in X-ray diffraction data. Acta Crystallogr A. 1968;24:379–390. doi: 10.1107/S0567739468000744
  • Coppens P. Comparative X-ray and neutron diffraction study of bonding effects in s-Triazine. Science. 1967;158:1577–1579. doi: 10.1126/science.158.3808.1577
  • Dawson B. A general structure factor formalism for interpreting accurate X-ray and neutron diffraction data. Proc. Roy. Soc., Series A, Mathematical and Physical Sciences, 1967; 298:255–263. doi: 10.1098/rspa.1967.0102
  • Stewart RF. Generalized X-ray scattering factors. J. Chem Phys. 1969; 51:4569–4577. doi: 10.1063/1.1671828
  • Stewart RF. Electron population analysis with rigid pseudoatoms. Acta Crystallogr A. 1976; 32:565–574. doi: 10.1107/S056773947600123X
  • Coppens P. X-ray charge densities and chemical bonding. Oxford (UK): International Union of Crystallography/Oxford University Press; 1997.
  • Hansen NK, Coppens P. Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr A. 1978;34:909–921. doi: 10.1107/S0567739478001886
  • Koritsanszky T, Volkov A, Coppens P. Aspherical-atom scattering factors from molecular wave functions. 1. Transferability and conformation dependence of atomic electron densities of peptides within the multipole formalism. Acta Crystallogr A. 2002; 58:464–472. doi: 10.1107/S0108767302010991
  • Pichon-Pesme V, Jelsch C, Guillot B, et al. A comparison between experimental and theoretical aspherical-atom scattering factors for charge-density refinement of large molecules. Acta Crystallogr A. 2004;60:204–208. doi: 10.1107/S0108767304004246
  • Dittrich B, Hübschle CB, Messerschmidt M, et al. The invariom model and its application: refinement of D,L-serine at different temperatures and resolution. Acta Crystallogr A. 2005;61:314–320. doi: 10.1107/S0108767305005039
  • Volkov A, Messerschmidt M, Coppens P. Improving the scattering-factor formalism in protein refinement: application of the University at Buffalo Aspherical-Atom Databank to polypeptide structures. Acta Crystallogr. 2007;D63:160–170.
  • Schnieders MJ, Fenn TD, Pande VS, et al. Polarizable atomic multipole X-ray refinement: application to peptide crystals. Acta Crystallogr. 2009;D65:952–965.
  • Lübben J, Wandtke CM, Hübschle CB, et al. Aspherical scattering factors for SHELXL – model, implementation and application. Acta Crystallogr A. 2019;75:50–62. doi: 10.1107/S2053273318013840
  • Brill R. On the influence of binding electrons on X-ray intensities. Acta Crystallogr. 1960;13:275–276. doi: 10.1107/S0365110X60000649
  • Hosemann R, Bagghi SN. Direct analysis of diffraction by matter. Amsterdam (The Netherlans): North-Holland Publ. Co; 1962; Ch. XIII.
  • Coppens P, Lehmann MS. Charge density studies below liquid nitrogen temperature. II. Neutron analysis of p-Nitropyridine N-Oxide at 30K and comparison with X-ray results. Acta Crystallogr. 1976;B32:1777–1784. doi: 10.1107/S0567740876006389
  • Hellner E. A simple refinement of density distributions of bonding electrons. I. A description of the proposed method. Acta Crystallogr. 1977;B33:3813–3816. doi: 10.1107/S0567740877012126
  • Pietsch U. X-Ray Bond Charge in GaAs and InSb. Phys Status Solidi B. 1981;103:93–100. doi: 10.1002/pssb.2221030108
  • Afonine P, Lunin VY, Muzet N, et al. On the possibility of observation of valence electron density for individual bonds in proteins in conventional difference maps. Acta Crystallogr. 2004;D60:260–274.
  • Afonine PV, Grosse-Kunstleve RW, Adams P, et al. On macromolecular refinement at subatomic resolution with interatomic scatterers. Acta Crystallogr. 2007;D63:1194–1197.
  • Dadda N, Nassour A, Guillot B, et al. Charge-density analysis and electrostatic properties of 2-carboxy-4-methylanilinium chloride monohydrate obtained using a multipolar and a spherical-charges model. Acta Crystallogr A. 2012;68:452–463. doi: 10.1107/S0108767312016571
  • Nazarenko A. Evaluation of covalent bond density in molecular crystals using simplified virtual scattering centers. MS22-P02. In: Book of Abstract. European Crystallographic Meeting; 2019 August 17-23. Vienne, Austria: Electronic publication; 2019. p. 354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.