515
Views
0
CrossRef citations to date
0
Altmetric
Review

Neutrons meet ice polymorphs

ORCID Icon
Pages 224-297 | Received 29 Apr 2022, Accepted 13 Sep 2022, Published online: 05 Oct 2022

References

  • Chaplin M. Water structure and science. Available from: https://water.lsbu.ac.uk/water/water_structure_science.html
  • Tammann G. Ann Phys. 1900;2:2.
  • Bridgman PW. The pressure-volume-temperature relations of the liquid, and the phase diagram of heavy water. J Chem Phys. 1935;3:597–605.
  • Bridgman PW. Water, in the liquid and five solid forms, under pressure. Proc Am Acad Arts Sci. 1912;47:441–558.
  • Petrenko VF, Whitworth RW. Physics of ice. New York: OUP Oxford; 2002.
  • Engel EA, Anelli A, Ceriotti M, et al. Mapping uncharted territory in ice from zeolite networks to ice structures. Nat Commun. 2018;9:2173.
  • Lobban C, Finney JL, Kuhs WF. The structure of a new phase of ice. Nature. 1998;391:268–270.
  • König H. Eine kubische Eismodifikation. Z Kristallogr Crsyt Mater. 1943;105:279–286.
  • Burton EF, Oliver WF. Proc Roy Soc (London). 1935;A153:166.
  • Whalley E, Davidson DW, Heath JBR. Dielectric properties of ice VII. Ice VIII: a new phase of ice. J Chem Phys. 1966;45:3976–3982.
  • Whalley E, Heath JBR, Davidson DW. Ice IX: an antiferroelectric phase related to ice III. J Chem Phys. 1968;48:2362–2370.
  • Kawada S. Dielectric dispersion and phase transition of KOH doped ice. J Phys Soc Jpn. 1972;32:1442.
  • Tajima Y, Matsuo T, Suga H. Calorimetric study of phase transition in hexagonal ice doped with alkali hydroxides. J Phys Chem Solids. 1984;45:1135–1144.
  • Matsuo T, Tajima Y, Suga H. Calorimetric study of a phase transition in D2O ice Ih doped with KOD: ice XI. J Phys Chem Solids. 1986;47:165–173.
  • Aoki K, Yamawaki H, Sakashita M, et al. Infrared absorption study of the hydrogen-bond symmetrization in ice to 110 GPa. Phys Rev B. 1996;54:15673–15677.
  • Goncharov AF, Struzhkin VV, Somayazulu MS, et al. Compression of ice to 210 gigapascals: infrared evidence for a symmetric hydrogen-bonded phase. Science. 1996;273:218–220.
  • Pruzan P, Wolanin E, Gauthier M, et al. Raman scattering and X-ray diffraction of ice in the Megabar range. Occurrence of a symmetric disordered solid above 62 GPa. J Phys Chem B. 1997;101:6230–6233.
  • Kamb B, Davis BL. Ice VII, The densest form of ice. Proc Natl Acad Sci USA. 1964;52:1433–1439.
  • Salzmann CG, Radaelli PG, Hallbrucker A, et al. The preparation and structures of hydrogen ordered phases of ice. Science. 2006;311:1758–1761.
  • Salzmann CG, Radaelli PG, Mayer E, et al. Ice XV: a new thermodynamically stable phase of ice. Phys Rev Lett. 2009;103:105701.
  • Falenty A, Hansen TC, Kuhs WF. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature. 2014;516:231–233.
  • del Rosso L, Celli M, Ulivi L. New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice. Nat Commun. 2016;7:13394.
  • Komatsu K, Machida S, Noritake F, et al. Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate. Nat Commun. 2020;11:464.
  • del Rosso L, Celli M, Grazzi F, et al. Cubic ice Ic without stacking defects obtained from ice XVII. Nat Mater. 2020;19:663–668.
  • Millot M, Coppari F, Rygg JR, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature. 2019;569:251–255.
  • Yamane R, Komatsu K, Gouchi J, et al. Experimental evidence for the existence of a second partially-ordered phase of ice VI. Nat Commun. 2021;12:1129.
  • Gasser TM, Thoeny AV, Fortes AD, et al. Structural characterization of ice XIX as the second polymorph related to ice VI. Nat Commun. 2021;12:1128.
  • Prakapenka VB, Holtgrewe N, Lobanov SS, et al. Polymorphism of superionic ice. arXiv preprint arXiv:200707715; 2020.
  • Prakapenka VB, Holtgrewe N, Lobanov SS, et al. Structure and properties of two superionic ice phases. Nat Phys. 2021;17:1233–1238.
  • Salzmann CG, Radaelli PG, Slater B, et al. The polymorphism of ice: five unresolved questions. Phys Chem Chem Phys. 2011;13:18468–18480.
  • Salzmann CG. Advances in the experimental exploration of water’s phase diagram. J Chem Phys. 2019;150:060901.
  • Loerting T, Fuentes-Landete V, Tonauer CM, et al. Open questions on the structures of crystalline water ices. Commun Chem. 2020;3:109.
  • Mishima O. Liquid-phase transition in water. Tokyo: Springer; 2021.
  • Amann-Winkel K, Bellissent-Funel M-C, Bove LE, et al. X-ray and neutron scattering of water. Chem Rev. 2016;116:7570–7589.
  • Amann-Winkel K, Böhmer R, Fujara F, et al. Colloquium: water’s controversial glass transitions. Rev Mod Phys. 2016;88:011002.
  • Tanaka H. Liquid–liquid transition and polyamorphism. J Chem Phys. 2020;153:130901.
  • Komatsu K. Development of temperature-pressure variable system – mito system – for neutron scattering experiments. Rev High Pressure Sci Technol. 2016;26:119–127.
  • Komatsu K, Yamane R, Noritake F, et al. Studies on partially ordered state of ice XV. Nihon Kessho Gakkaishi. 2017;59:293–300.
  • Komatsu K. Ice polymorphs: revealed by neutron diffraction under pressure. Nihon Kessho Gakkaishi. 2020;62:190–197.
  • Komatsu K. Unresolved problems of ice polymorphs: approach from high-pressure neutron diffraction studies. Japanese Mag Mineral Petrol Sci. 2021;50:1–9.
  • Arnold GP, Wenzel RG, Rabideau SW, et al. Neutron diffraction study of ice polymorphs under helium pressure. J Chem Phys. 1971;55:589–595.
  • Klotz S. Techniques in high pressure neutron scattering. Florida: CRC Press, Taylor & Francis Group; 2012.
  • Brugger RM, Bennion RB, Worlton TG. The crystal structure of bismuth-II at 26 kbar. Phys Lett A. 1967;24:714–717.
  • Jorgensen JD, Beyerlein RA, Watanabe N, et al. Structure of D2O ice VIII from in situ powder neutron diffraction. J Chem Phys. 1984;81:3211–3214.
  • Jorgensen JD, Worlton TG. Disordered structure of D2O ice VII from in situ neutron powder diffraction. J Chem Phys. 1985;83:329–333.
  • Bloch D, Vettier C, Burlet P. Phase transition in manganese oxide at high pressure. Phys Lett A. 1980;75:301–303.
  • Kuhs WF, Finney JL, Vettier C, et al. Structure and hydrogen ordering in ices VI, VII, and VIII by neutron powder diffraction. J Chem Phys. 1984;81:3612–3623.
  • Parise JB. High pressure studies. Rev Mineral Geochem. 2006;63:205–231.
  • Nelmes RJ, Loveday JS, Marshall WG, et al. Multisite disordered structure of ice VII to 20 GPa. Phys Rev Lett. 1998;81:2719–2722.
  • Besson JM, Nelmes RJ, Hamel G, et al. Neutron powder diffraction above 10 GPa. Phys B. 1992;180–181:907–910.
  • Khvostantsev L, Vereshchagin L, Novikov A. Device of toroid type for high pressure generation. High Temp-High Press. 1977;9:637–640.
  • Klotz S, Besson JM, Hamel G, et al. Neutron powder diffraction at pressures beyond 25 GPa. Appl Phys Lett. 1995;66:1735–1737.
  • Hattori T, Sano-Furukawa A, Machida S, et al. Development of a technique for high pressure neutron diffraction at 40 GPa with a Paris-Edinburgh press . High Press Res. 2019;39:417–425.
  • Klotz S, Casula M, Komatsu K, et al. High-pressure structure and electronic properties of YbD2 to 34 GPa. Phys Rev B. 2019;100:020101.
  • Goncharenko IN, Mirebeau I, Ochiai A. Magnetic neutron diffraction under pressures up to 43 GPa. Study of the EuX and GdX compounds. Hyperfine Interact. 2000;128:225–244.
  • Mirebeau I, Mignot JM. Igor Goncharenko: a pioneer in high-pressure neutron diffraction. High Press Res. 2008;28:141–142.
  • Bull CL, Funnell NP, Tucker MG, et al. PEARL: the high pressure neutron powder diffractometer at ISIS. High Press Res. 2016;36:1–19.
  • Hansen TC, Henry PF, Fischer HE, et al. The D20 instrument at the ILL: a versatile high-intensity two-axis neutron diffractometer. Meas Sci Technol. 2008;19:034001.
  • Calder S, An K, Boehler R, et al. A suite-level review of the neutron powder diffraction instruments at Oak Ridge National Laboratory. Rev Sci Instrum. 2018;89:092701.
  • Hattori T, Sano-Furukawa A, Arima H, et al. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC. Nucl Instr, Meth Phys Res A. 2015;780:55–67.
  • Kozlenko D, Kichanov S, Lukin E, et al. The DN-6 neutron diffractometer for high-pressure research at half a megabar scale. Crystals (Basel). 2018;8:331.
  • Kozlenko DP, Kichanov SE, Lukin EV, et al. High-pressure neutron diffraction study of the crystal and magnetic structure of materials at the pulsed reactor IBR-2: current opportunities and prospects. Crystallogr Rep. 2021;66:303–313.
  • Boehler R, Guthrie M, Molaison JJ, et al. Large-volume diamond cells for neutron diffraction above 90 GPa. High Press Res. 2013;33:546–554.
  • Sano-Furukawa A, Hattori T, Arima H, et al. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments. Rev Sci Instrum. 2014;85:113905.
  • Komatsu K, Moriyama M, Koizumi T, et al. Development of a new P–T controlling system for neutron-scattering experiments. High Press Res. 2013;33:208–213.
  • Komatsu K, Klotz S, Nakano S, et al. Developments of nano-polycrystalline diamond anvil cells for neutron diffraction experiments. High Press Res. 2020;40:184–193.
  • Arima H, Komatsu K, Ikeda K, et al. Designing an elliptical supermirror guide for the high-pressure material science beamline of J-PARC. Nucl Instrum Methods Phys Res Sect A. 2009;600:71–74.
  • Binns J, Kamenev KV, McIntyre GJ, et al. Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction. IUCrJ. 2016;3:168–179.
  • Haberl B, Dissanayake S, Wu Y, et al. Next-generation diamond cell and applications to single-crystal neutron diffraction. Rev Sci Instrum. 2018;89:092902.
  • Massani B, Loveday JS, Molaison JJ, et al. On single-crystal neutron-diffraction in DACs: quantitative structure refinement of light elements on SNAP and TOPAZ. High Press Res. 2020;40:339–357.
  • Yamashita K, Komatsu K, Klotz S, et al. A nano-polycrystalline diamond anvil cell with bulk metallic glass cylinder for single-crystal neutron diffraction. High Press Res. 2020;40:88–95.
  • Haberl B, Donnelly M-E, Molaison JJ, et al. Methods for neutron diffraction studies on hydride superconductors and other metal hydrides. J Appl Phys. 2021;130:215901.
  • Guthrie M. Future directions in high-pressure neutron diffraction. J Phys: Condens Matter. 2015;27:153201.
  • Boehler R, De Hantsetters K. New anvil designs in diamond-cells. High Press Res. 2004;24:391–396.
  • Guthrie M, Boehler R, Molaison JJ, et al. Structure and disorder in ice VII on the approach to hydrogen-bond symmetrization. Phys Rev B. 2019;99:184112.
  • Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite. Nature. 2003;421:599–600.
  • Sumiya H, Irifune T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J Mater Res. 2007;22:2345–2351.
  • Sumiya H, Harano K. Distinctive mechanical properties of nano-polycrystalline diamond synthesized by direct conversion sintering under HPHT. Diamond Relat Mater. 2012;24:44–48.
  • Guthrie M, Pruteanu CG, Donnelly M-E, et al. Radiation attenuation by single-crystal diamond windows. J Appl Crystallogr. 2017;50:76–86.
  • Pawlus S, Klotz S, Paluch M. Effect of compression on the relationship between viscosity and dielectric relaxation time in hydrogen-bonded primary alcohols. Phys Rev Lett. 2013;110:173004.
  • Kuhs WF, Ahsbahs H, Londono D, et al. In-situ crystal growth and neutron four-circle diffractometry under high pressure. Phys B. 1989;156–157:684–687.
  • Kuhs WF, Bauer FC, Hausmann R, et al. Single crystal diffraction with X-rays and neutrons: high quality at high pressure? High Press Res. 1996;14:341–352.
  • Ahsbahs H. High pressure cell for use on four-circle diffractometers. Rev Phys Appl (Paris). 1984;19:819–821.
  • Osakabe T, Kakurai K, Kawana D, et al. Development of a hybrid-anvil type high-pressure device and its application to magnetic neutron scattering studies. J Magn Magn Mater. 2007;310:2725–2727.
  • Osakabe T, Kuwahara K, Kawana D, et al. Pressure-Induced antiferromagnetic order in filled skutterudite PrFe4P12 studied by single-crystal high-pressure neutron diffraction. J Phys Soc Jpn. 2010;79:034711.
  • Osakabe T, Yamauchi H, Okuchi T. Development of high-pressure technique for single-crystal magnetic neutron diffraction under 10 GPa. Rev High Press Sci Technol. 2010;20:72–75.
  • Bull CL, Guthrie M, Klotz S, et al. Toroidal anvils for single-crystal neutron studies. High Press Res. 2005;25:229–233.
  • Bull C, Guthrie M, Nelmes R, et al. Time-of-flight single-crystal neutron diffraction to 10 GPa and above. High Press Res. 2009;29:780–791.
  • Bull CL, Guthrie M, Archer J, et al. High-pressure single-crystal neutron diffraction to 10 GPa by angle-dispersive techniques. J Appl Crystallogr. 2011;44:831–838.
  • Haberl B, Dissanayake S, Ye F, et al. Wide-angle diamond cell for neutron scattering. High Press Res. 2017;37:495–506.
  • Grzechnik A, Meven M, Friese K. Single-crystal neutron diffraction in diamond anvil cells with hot neutrons. J Appl Crystallogr. 2018;51:351–356.
  • Yokoyama Y, Tokunaga H, Yavari A, et al. Tough hypoeutectic Zr-based bulk metallic glasses. Metall Mater Trans A. 2011;42:1468–1475.
  • Komatsu K, Munakata K, Matsubayashi K, et al. Zr-based bulk metallic glass as a cylinder material for high pressure apparatuses. High Press Res. 2015;35:254–262.
  • Yamashita K, Komatsu K, Ohhara T, et al. Improvement of nano-polycrystalline diamond anvil cells with Zr-based bulk metallic glass cylinder for higher pressures: application to Laue-TOF diffractometer. High Press Res. 2022;42:121–135.
  • Iizuka R, Yagi T, Gotou H, et al. An opposed-anvil-type apparatus with an optical window and a wide-angle aperture for neutron diffraction. High Press Res. 2012;32:430–441.
  • Komatsu K, Klotz S, Shinozaki A, et al. Performance of ceramic anvils for high pressure neutron scattering. High Press Res. 2014;34:494–499.
  • Klotz S, Strässle T, Lebert B, et al. High pressure neutron diffraction to beyond 20 GPa and below 1.8 K using Paris-Edinburgh load frames. High Press Res. 2016;36:1–6.
  • Yamashita K, Komatsu K, Hattori T, et al. Crystal structure of a high-pressure phase of magnesium chloride hexahydrate determined by in-situ X-ray and neutron diffraction methods. Acta Crystallogr Sect C: Struct Chem. 2019;75.
  • Klotz S, Komatsu K, Polian A, et al. Crystal structure and magnetism of MnO under pressure. Phys Rev B. 2020;101:064105.
  • Yamane R, Komatsu K, Maynard-Casely HE, et al. Search for a ferroelectrically ordered form of ice VII by neutron diffraction under high pressure and high electric field. Phys Rev B. 2019;99:174201.
  • Caracas R, Hemley RJ. Ferroelectricity in high-density H2O ice. J Chem Phys. 2015;142:134501.
  • Umemoto K, Sugimura E, de Gironcoli S, et al. Nature of the volume isotope effect in ice. Phys Rev Lett. 2015;115:173005.
  • Kamb B. Crystallography of ice. In: Whalley E, Jones SJ, Gold LW, editor. Physics and chemistry of ice. Ottawa: Royal Society of Canada; 1973. p. 28–41.
  • Bridgman PW. The phase diagram of water to 45,000 kg/cm2. J Chem Phys. 1937;5:964–966.
  • Dunaeva AN, Antsyshkin DV, Kuskov OL. Phase diagram of H2O: thermodynamic functions of the phase transitions of high-pressure ices. Sol Syst Res. 2010;44:202–222.
  • Wagner W, Riethmann T, Feistel R, et al. New equations for the sublimation pressure and melting pressure of H2O ice Ih. J Phys Chem Ref Data. 2011;40:043103.
  • Grasset O, Amiguet E, Choukroun M. Pressure measurements within optical cells using diamond sensors: accuracy of the method below 1 GPa. High Press Res. 2005;25:255–265.
  • Grasset O. Calibration of the R ruby fluorescence lines in the pressure range [0–1 GPa] and the temperature range [250–300 K]. High Press Res. 2001;21:139–157.
  • Chou I-M, Blank JG, Goncharov AF, et al. In situ observations of a high-pressure phase of H2O ice. Science. 1998;281:809–812.
  • Pistorius CWFT, Pistorius MC, Blakey JP, et al. Melting curve of ice VII to 200 kbar. J Chem Phys. 1963;38:600–602.
  • Mishima O, Endo S. Melting curve of ice VII. J Chem Phys. 1978;68:4417–4418.
  • Fei YW, Mao HK, Hemley RJ. Thermal expansivity, bulk modulus, and melting curve of H2O–ice VII to 20 GPa. J Chem Phys. 1993;99:5369–5373.
  • Datchi F, Loubeyre P, LeToullec R. Extended and accurate determination of the melting curves of argon, helium, ice H2O and hydrogen H2. Phys Rev B. 2000;61:6535–6546.
  • Dubrovinskaia N, Dubrovinsky L. Melting curve of water studied in externally heated diamond-anvil cell. High Press Res. 2003;23:307–311.
  • Frank MR, Fei YW, Hu JZ. Constraining the equation of state of fluid H2O to 80 GPa using the melting curve, bulk modulus, and thermal expansivity of ice VII. Geochim Cosmochim Acta. 2004;68:2781–2790.
  • Schwager B, Chudinovskikh L, Gavriliuk A, et al. Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell. J Phys Condens Matter. 2004;16:S1177–S11S9.
  • Schwager B, Boehler R. H2o: another ice phase and its melting curve. High Press Res. 2008;28:431–433.
  • Kell GS, Whalley E. Equilibrium line between ice I and III. J Chem Phys. 1968;48:2359–2361.
  • Durham WB, Heard HC, Kirby SH. Experimental deformation of polycrystalline H2O ice at high pressure and low temperature: preliminary results. J Geophys Res Solid Earth. 1983;88:B377–BB92.
  • Brown A, Whalley E. Preliminary investigation of the phase boundaries between ice VI and VII and ice VI and VIII. J Chem Phys. 1966;45:4360–4361.
  • Pistorius CWFT, Rapoport E, Clark JB. Phase diagrams of H2O and D2O at high pressures. J Chem Phys. 1968;48:5509–5514.
  • Johari GP, Lavergne A, Whalley E. Dielectric properties of ice VII and VIII and phase boundary between ice VI and VII. J Chem Phys. 1974;61:4292–4300.
  • Pruzan P, Chervin JC, Canny B. Stability domain of the ice-VIII proton-ordered phase at very high-pressure and low-temperaturE. J Chem Phys. 1993;99:9842–9846.
  • Goncharov AF, Struzhkin VV, Mao HK, et al. Raman spectroscopy of dense H2O and the transition to symmetric hydrogen bonds. Phys Rev Lett. 1999;83:1998–2001.
  • Song M, Yamawaki H, Fujihisa H, et al. Infrared investigation on ice VIII and the phase diagram of dense ices. Phys Rev B. 2003;68:014106.
  • Yen F, Chi Z. Proton ordering dynamics of H2O ice. Phys Chem Chem Phys. 2015;17:12458–12461.
  • Nishibata K, Whalley E. Thermal effects of the transformation ice III–IX. J Chem Phys. 1974;60:3189–3194.
  • Köster KW, Fuentes-Landete V, Raidt A, et al. Dynamics enhanced by HCl doping triggers full Pauling entropy release at the ice XII-XIV transition. Nat Commun. 2015;6:1–7.
  • Fuentes-Landete V, Köster KW, Böhmer R, et al. Thermodynamic and kinetic isotope effects on the order–disorder transition of ice XIV to ice XII. Phys Chem Chem Phys. 2018;20:21607–21616.
  • Mishima O, Stanley HE. Decompression-induced melting of ice IV and the liquid-liquid transition in water. Nature. 1998;392:164–168.
  • Grazulis S, Chateigner D, Downs RT, et al. Crystallography open database – an open-access collection of crystal structures. J Appl Crystallogr. 2009;42:726–729.
  • Allen FH, Bellard S, Brice MD, et al. The Cambridge crystallographic data centre: computer-based search, retrieval, analysis and display of information. Acta Crystallogr Sect B. 1979;35:2331–2339.
  • Kamb B, Hamilton WC, LaPlaca SJ, et al. Ordered proton configuration in ice II, from single-crystal neutron diffraction. J Chem Phys. 1971;55:1934–1945.
  • Leadbetter AJ, Ward RC, Clark JW, et al. The equilibrium low-temperature structure of ice. J Chem Phys. 1985;82:424–428.
  • Lobban C, Finney JL, Kuhs WF. The p–T dependency of the ice II crystal structure and the effect of helium inclusion. J Chem Phys. 2002;117:3928–3934.
  • Lobban C, Finney JL, Kuhs WF. The structure and ordering of ices III and V. J Chem Phys. 2000;112:7169–7180.
  • Lobban C. Neutron diffraction studies of ices. London: University of London, University College London (United Kingdom); 1998.
  • Klotz S, Hamel G, Loveday JS, et al. Recrystallisation of HDA ice under pressure by in-situ neutron diffraction to 3.9 GPa. Z Kristallogr Crsyt Mater. 2003;218:117–122.
  • Salzmann CG, Rosu-Finsen A, Sharif Z, et al. Detailed crystallographic analysis of the ice V to ice XIII hydrogen-ordering phase transition. J Chem Phys. 2021;154:134504.
  • Komatsu K, Noritake F, Machida S, et al. Partially ordered state of ice XV. Sci Rep. 2016;6:28920.
  • Besson JM, Pruzan P, Klotz S, et al. Variation of interatomic distances in ice VIII to 10 GPa. Phys Rev B. 1994;49:12540–12550.
  • Komatsu K, Klotz S, Machida S, et al. Anomalous hydrogen dynamics of the ice VII–VIII transition revealed by high-pressure neutron diffraction. Proc Nat Acad Sci. 2020;117:6356–6361.
  • La Placa SJ, Hamilton WC, Kamb B, et al. On a nearly proton-ordered structure for ice IX. J Chem Phys. 1973;58:567–580.
  • Londono JD, Kuhs WF, Finney JL. Neutron diffraction studies of ices III and IX on under-pressure and recovered samples. J Chem Phys. 1993;98:4878–4888.
  • Salzmann CG, Slater B, Radaelli PG, et al. Detailed crystallographic analysis of the ice VI to ice XV hydrogen ordering phase transition. J Chem Phys. 2016;145:204501.
  • del Rosso L, Grazzi F, Celli M, et al. Refined structure of metastable ice XVII from neutron diffraction measurements. J Phys Chem C. 2016;120:26955–26959.
  • Salzmann CG, Loveday JS, Rosu-Finsen A, et al. Structure and nature of ice XIX. Nat Commun. 2021;12:3162.
  • Singer SJ, Knight C. Hydrogen-bond topology and proton ordering in ice and water clusters. Adv Chem Phys. 2012;147:1.
  • Bragg SWH. The crystal structure of ice. Proc Phys Soc London. 1921;34:98–103.
  • John AS. The crystal structure of ice. Proc Natl Acad Sci U S A. 1918;4:193–197.
  • Dennison DM. The crystal structure of ice. Science. 1920;52:296–297.
  • Dennison DM. The crystal structure of ice. Phys Rev. 1921;17:20–22.
  • Pauling L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J Am Chem Soc. 1935;57:2680–2684.
  • Giauque WF, Ashley MF. Molecular rotation in ice at 10°K. Free energy of formation and entropy of water. Phys Rev. 1933;43:81–82.
  • Bernal JD, Fowler RH. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J Chem Phys. 1933;1:515–548.
  • Peterson SW, Levy HA. A single-crystal neutron diffraction study of heavy ice. Acta Crystallogr. 1957;10:70–76.
  • Kuhs WF, Lehmann MS. Bond-lengths, bond angles and transition barrier in ice Ih by neutron scattering. Nature. 1981;294:432–434.
  • Kuhs WF, Lehmann MS. The structure of the ice Ih by neutron diffraction. J Phys Chem. 1983;87:4312–4313.
  • Goto A, Hondoh T, Mae S. The electron density distribution in ice Ih determined by single-crystal x-ray diffractometry. J Chem Phys. 1990;93:1412–1417.
  • Fortes A. Accurate and precise lattice parameters of H2O and D2O ice Ih between 1.6 and 270 K from high-resolution time-of-flight neutron powder diffraction data. Acta Crystallogr Sect B. 2018;74:196–216.
  • Jakob M, Erk S. Die Wärmeleitfähigkeit von Eis zwischen 0 und-125. Wiss Abh Phys Tech Reichsanst. 1929;12:302–316 .
  • Dantl G. Wärmeausdehnung von H2O- und D2O-Einkristallen. Zeitschrift für Physik. 1962;166:115–118.
  • Röttger K, Endriss A, Ihringer J, et al. Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K. Acta Crystallogr Sect B: Struct Sci. 1994;50:644–648.
  • Rottger K, Endriss A, Ihringer J, et al. Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K. addendum. Acta Crystallogr Sect B. 2012;68:91.
  • Buckingham DTW, Neumeier JJ, Masunaga SH, et al. Thermal expansion of single-crystal H2O and D2O ice Ih. Phys Rev Lett. 2018;121:185505.
  • Ibberson RM. Design and performance of the new supermirror guide on HRPD at ISIS. Nucl Instrum Methods Phys Res Sect A. 2009;600:47–49.
  • Strässle T, Saitta AM, Klotz S, et al. Phonon dispersion of ice under pressure. Phys Rev Lett. 2004;93:225901.
  • Tanaka H, Yagasaki T, Matsumoto M. On the role of intermolecular vibrational motions for ice polymorphs III: mode characteristics associated with negative thermal expansion. J Chem Phys. 2021;155:214502.
  • Bove LE, Klotz S, Paciaroni A, et al. Anomalous proton dynamics in ice at low temperatures. Phys Rev Lett. 2009;103:165901.
  • Owen B, Olga S, Shannon N. Classical and quantum theories of proton disorder in hexagonal water ice. Phys Rev B. 2016;93:125143.
  • Kuhs WF, Sippel C, Falenty A, et al. Extent and relevance of stacking disorder in “ice Ic”. Proc Nat Acad Sci. 2012;109:21259–21264.
  • Kuhs WF, Genov G, Staykova DK, et al. Ice perfection and onset of anomalous preservation of gas hydrates. Phys Chem Chem Phys. 2004;6:4917–4920.
  • Falenty A, Kuhs WF. Self-preservation” of CO2 gas hydrates—surface microstructure and ice perfection. J Phys Chem B. 2009;113:15975–15988.
  • Falenty A, Hansen TC, Kuhs WF. Cubic ice formation and annealing during CO2 clathrate hydrate decomposition at low temperatures. Phys Chem Ice. 2010;2010:411.
  • Takeya S, Uchida T, Nagao J, et al. Particle size effect of CH4 hydrate for self-preservation. Chem Eng Sci. 2005;60:1383–1387.
  • Kohl I, Mayer E, Hallbrucker A. The glassy water–cubic ice system: a comparative study by X-ray diffraction and differential scanning calorimetry. Phys Chem Chem Phys. 2000;2:1579–1586.
  • Baker JM, Dore JC, Behrens P. Nucleation of ice in confined geometry. J Phys Chem B. 1997;101:6226–6229.
  • Dowell LG, Moline SW, Rinfret AP. A low-temperature X-ray diffraction study of ice structures formed in aqueous gelatin gels. Biochim Biophys Acta. 1962;59:158–167.
  • Elarby-Aouizerat A, Jal J-F, Dupuy J, et al. Comments on the ice Ic structure and Ic to Ih phase transformation mechanism : a neutron scattering investigation of ice precipitates in glassy LiCl.D2O. J Phys Colloques. 1987;48:C1-465–CC1-70.
  • Murray BJ, Knopf DA, Bertram AK. The formation of cubic ice under conditions relevant to Earth’s atmosphere. Nature. 2005;434:202–205.
  • Vigier G, Thollet G, Vassoille R. Cubic and hexagonal ice formation in water-glycerol mixture (50% w / w). J Cryst Growth. 1987;84:309–315.
  • Kajiwara K, Thanatuksom P, Murase N, et al. Cubic ice can be formed directly in the water phase of vitrified aqueous solutions. Cryoletters. 2008;29:29–34.
  • Palacios ODC, Inaba A, Andersson O. Low-temperature heat capacity of a two-dimensionally ordered structure of ice crystallized from glycerol aqueous solutions. Thermochim Acta. 2010;500:106–110.
  • Dowell LG, Rinfret AP. Low-temperature forms of ice as studied by X-ray diffraction. Nature. 1960;188:1144–1148.
  • McMillan JA, Los SC. Vitreous ice: irreversible transformations during warm-up. Nature. 1965;206:806–807.
  • Kuhs WF, Bliss DV, Finney JL. High-resolution neutron powder dffraction study of ice-Ic. J Phys. 1987;48:631–636.
  • Arnold GP, Finch ED, Rabideau SW, et al. Neutron-diffraction study of ice polymorphs. III. Ice Ic. J Chem Phys. 1968;49:4365–4369.
  • Bertie JE, Calvert LD, Whalley E. Transformations of ice II, ice III, and ice V at atmospheric pressure. J Chem Phys. 1963;38:840–846.
  • Finney JL. Water: a very short introduction. Oxford: Oxford University Press; 2015.
  • Malkin TL, Murray BJ, Salzmann CG, et al. Stacking disorder in ice I. Phys Chem Chem Phys. 2015;17:60–76.
  • Hansen TC, Sippel C, Kuhs WF. Approximations to the full description of stacking disorder in ice I for powder diffraction. Zeitschrift für Kristallographie. 2015;230:75–86.
  • Johari GP, Andersson O. Effects of stacking disorder on thermal conductivity of cubic ice. J Chem Phys. 2015;143:054505.
  • Hondoh T, Itoh T, Amakai S, et al. Formation and annihilation of stacking faults in pure ice. J Phys Chem. 1983;87:4040–4044.
  • Hondoh T. Dislocation mechanism for transformation between cubic ice Ic and hexagonal ice Ih. Philos Mag. 2015;95:3590–3620.
  • Geiger P, Dellago C, Macher M, et al. Proton ordering of cubic ice Ic: spectroscopy and computer simulations. J Phys Chem C. 2014;118:10989–10997.
  • Howe R, Whitworth RW. A determination of the crystal structure of ice XI. J Chem Phys. 1989;90:4450–4453.
  • Jackson SM, Nield VM, Whitworth RW, et al. Single-crystal neutron diffraction studies of the structure of ice XI. J Phys Chem B. 1997;101:6142–6145.
  • Fukazawa H, Hoshikawa A, Ishii Y, et al. Existence of ferroelectric ice in the universe. Astrophys J. 2006;652:L57–L60.
  • Iitaka T. Stability of ferroelectric ice. arXiv preprint arXiv:10071792. 2010.
  • Parkkinen P, Riikonen S, Halonen L. Ice XI: not that ferroelectric. J Phys Chem C. 2014;118:26264–26275.
  • Onsager L, Weller E. Ferroelectricity of ice. Amsterdam: Elsevier; 1967:16–19.
  • Kobayashi K, Yasuda H. Phase transition of ice Ic to ice XI under electron beam irradiation. Chem Phys Lett. 2012;547:9–12.
  • Kouchi A, Kimura Y, Kitajima K, et al. UV-induced formation of ice XI observed using an ultra-high vacuum cryogenic transmission electron microscope and its implications for planetary science. Front Chem. 2021;9:799851.
  • Arakawa M, Kagi H, Fernandez-Baca JA, et al. The existence of memory effect on hydrogen ordering in ice: the effect makes ice attractive. Geophys Res Lett. 2011;38:L16101.
  • Sugimoto T, Aiga N, Otsuki Y, et al. Emergent high-Tc ferroelectric ordering of strongly correlated and frustrated protons in a heteroepitaxial ice film. Nat Phys. 2016;12:1063–1068.
  • Londono D, Finney JL, Kuhs WF. Formation, stability, and structure of helium hydrate at high pressure. J Chem Phys. 1992;97:547–552.
  • Fortes AD, Wood IG, Alfredsson M, et al. The incompressibility and thermal expansivity of D2O ice II determined by powder neutron diffraction. J Appl Crystallogr. 2005;38:612–618.
  • Whalley E, Davidson DW. Entropy changes at the phase transitions in ice. J Chem Phys. 1965;43:2148–2149.
  • Nakamura T, Matsumoto M, Yagasaki T, et al. Thermodynamic stability of ice II and its hydrogen-disordered counterpart: role of zero-point energy. J Phys Chem B. 2016;120:1843–1848.
  • Shephard JJ, Slater B, Harvey P, et al. Doping-induced disappearance of ice II from water’s phase diagram. Nat Phys. 2018;14:569–572.
  • Londono D, Kuhs WF, Finney JL. Enclathration of helium in ice II: the first helium hydrate. Nature. 1988;332:141–142.
  • Knight C, Singer SJ. A reexamination of the ice III/IX hydrogen bond ordering phase transition. J Chem Phys. 2006;125:064506.
  • Sharif Z, Shephard JJ, Slater B, et al. Effect of ammonium fluoride doping on the ice III to ice IX phase transition. J Chem Phys. 2021;154:114502.
  • Salzmann CG, Sharif Z, Bull CL, et al. Ammonium fluoride as a hydrogen-disordering agent for ice. J Phys Chem C. 2019;123:16486–16492.
  • Engelhardt H, Whalley E. Ice IV. J Chem Phys. 1972;56:2678–2684.
  • Evans LF. Selective nucleation of the high-pressure ices. J Appl Phys. 1967;38:4930–4932.
  • Engelhardt H, Kamb B. Structure of ice IV, a metastable high-pressure phase. J Chem Phys. 1981;75:5887–5899.
  • Shephard JJ, Ling S, Sosso GC, et al. Is high-density amorphous ice simply a “derailed” state along the ice I to ice IV pathway? J Phys Chem Lett. 2017;8:1645–1650.
  • Mariedahl D, Perakis F, Späh A, et al. X-ray scattering and O–O pair-distribution functions of amorphous ices. J Phys Chem B. 2018;122:7616–7624.
  • Martelli F, Giovambattista N, Torquato S, et al. Searching for crystal-ice domains in amorphous ices. Phys Rev Mater. 2018;2:075601.
  • Salzmann CG, Kohl I, Loerting T, et al. Pure ices IV and XII from high-density amorphous ice. Can J Phys. 2003;81:25–32.
  • Rosu-Finsen A, Salzmann CG. Is pressure the Key to hydrogen ordering ice IV? Chem Phys Lett. 2021;789:139325.
  • Kamb B, Prakash A, Knobler C. Structure of ice V. Acta Crystallogr. 1967;22:706–715.
  • Kamb B, Placa SJL. Trans Am Geophys Unition. 1974;56:1202.
  • Salzmann CG, Radaelli PG, Finney JL, et al. A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII. Phys Chem Chem Phys. 2008;10:6313–6324.
  • Rosu-Finsen A, Salzmann CG. Benchmarking acid and base dopants with respect to enabling the ice V to XIII and ice VI to XV hydrogen-ordering phase transitions. J Chem Phys. 2018;148:244507.
  • Bull CL, Guthrie M, Nelmes RJ, et al. Low-temperature neutron single-crystal diffraction studies of samples grown at high pressure. High Press Res. 2009;29:644–648.
  • Knight C, Singer SJ. Prediction of a phase transition to a hydrogen bond ordered form of ice VI. J Phys Chem B. 2005;109:21040–21046.
  • Nanda KD, Beran GJO. What governs the proton ordering in ice XV? J Phys Chem Lett. 2013;4:3165–3169.
  • Del Ben M, VandeVondele J, Slater B. Periodic MP2, RPA, and boundary condition assessment of hydrogen ordering in ice XV. J Phys Chem Lett. 2014;5:4122–4128.
  • Johari GP, Whalley E. Dielectric properties of ice VI at low-temperatures. J Chem Phys. 1976;64:4484–4489.
  • Johari GP, Whalley E. Evidence for a very slow transformation in ice VI at low temperatures. J Chem Phys. 1979;70:2094–2097.
  • Mishima O, Mori N, Endo S. Thermal-expansion anomaly of ice-VI related to the order-disorder transition. J Chem Phys. 1979;70:2037–2038.
  • Handa YP, Klug DD, Whalley E. Phase transitions of ice V and VI. J Phys Colloques. 1987;48:C1-435–CC1-40.
  • Mincevasukarova B, Slark GE, Sherman WF. The Raman-spectra of ice-V and ice VI and evidence of partial proton ordering at low-temperatures. J Mol Struct. 1986;143:87–90.
  • Kuo JL, Kuhs WF. A first principles study on the structure of ice-VI: static distortion, molecular geometry, and proton ordering. J Phys Chem B. 2006;110:3697–3703.
  • Shephard JJ, Salzmann CG. The complex kinetics of the ice VI to ice XV hydrogen ordering phase transition. Chem Phys Lett. 2015;637:63–66.
  • Whale TF, Clark SJ, Finney JL, et al. DFT-assisted interpretation of the Raman spectra of hydrogen-ordered ice XV. J Raman Spectrosc. 2013;44:290–298.
  • Gasser Tobias M, Thoeny AV, Plaga LJ, et al. Experiments indicating a second hydrogen ordered phase of ice VI. Chem Sci. 2018;9:4224–4234.
  • Rosu-Finsen A, Salzmann CG. Origin of the low-temperature endotherm of acid-doped ice VI: new hydrogen-ordered phase of ice or deep glassy states? Chem Sci. 2019;10:515–523.
  • Thoeny AV, Gasser TM, Loerting T. Distinguishing ice β-XV from deep glassy ice VI: Raman spectroscopy. Phys Chem Chem Phys. 2019;21:15452–15462.
  • Rosu-Finsen A, Amon A, Armstrong J, et al. Deep-glassy ice VI revealed with a combination of neutron spectroscopy and diffraction. J Phys Chem Lett. 2020;11:1106–1111.
  • Yamane R, Komatsu K, Gouchi J, et al. New diversity form of ice polymorphism: discovery of second hydrogen ordered phase of ice VI. arXiv preprint arXiv:200610928; 2020.
  • Gasser TM, Thoeny AV, Greussing V, et al. Calorimetric investigation of hydrogen-atom sublattice transitions in the ice VI/XV/XIX trio. J Phys Chem B. 2021;125:11777–11783.
  • Kawada S. Acceleration of dielectric relaxation by KOH-doping and phase transition in ice Ih. J Phys Chem Solids. 1989;50:1177–1184.
  • Köster KW, Raidt A, Fuentes Landete V, et al. Doping-enhanced dipolar dynamics in ice V as a precursor of hydrogen ordering in ice XIII. Phys Rev B. 2016;94:184306.
  • Köster KW, Fuentes-Landete V, Raidt A, et al. Correction: author correction: dynamics enhanced by HCl doping triggers 60% Pauling entropy release at the ice XII–XIV transition. Nat Commun. 2018;9:16189.
  • Fortes AD, Wood IG, Tucker MG, et al. The P–V–T equation of state of D2O ice VI determined by neutron powder diffraction in the range 0 < P < 2.6 GPa and 120 < T < 330 K, and the isothermal equation of state of D2O ice VII from 2 to 7 GPa at room temperature. J Appl Crystallogr. 2012;45:523–534.
  • Hansen TC. The everlasting hunt for new ice phases. Nat Commun. 2021;12:3161.
  • Okada T, Iitaka T, Yagi T, et al. Electrical conductivity of ice VII. Sci Rep. 2015;4:5778.
  • Noguchi N, Okuchi T. Self-diffusion of protons in H2O ice VII at high pressures: anomaly around 10 GPa. J Chem Phys. 2016;144:234503.
  • Fukui H, Hiraoka N, Hirao N, et al. Suppression of X-ray-induced dissociation of H2O molecules in dense ice under pressure. Sci Rep. 2016;6:26641.
  • Pruzan P, Chervin JC, Gauthier M. Raman spectroscopy investigation of ice VII and deuterated ice VII to 40 GPa. disorder in ice VII. Europhys Lett. 1990;13:81–87.
  • Klotz S, Komatsu K, Kagi H, et al. Bulk moduli and equations of state of ice VII and ice VIII. Phys Rev B. 2017;95:174111.
  • Yamane R, Komatsu K, Kagi H. Direct evidence of the proton-dynamics crossover in ice VII from high-pressure dielectric measurements beyond 10 GPa. Phys Rev B. 2021;104:214304.
  • Iitaka T. Simulating proton dynamics in high-pressure ice. Rev High Press Sci Technol. 2013;23:124–132.
  • Maynard-Casely HE. Peaks in space’ – crystallography in planetary science: past impacts and future opportunities. Crystallogr Rev. 2017;23:74–117.
  • Bove LE, Pietrucci F, Saitta AM, et al. On the link between polyamorphism and liquid-liquid transition: the case of salty water. J Chem Phys. 2019;151:044503.
  • Bove LE, Ranieri U. Salt- and gas-filled ices under planetary conditions. Philos Trans R Soc London, Ser A. 2019;377:20180262.
  • Klotz S, Bove LE, Strassle T, et al. The preparation and structure of salty ice VII under pressure. Nat Mater. 2009;8:405–409.
  • Klotz S, Komatsu K, Pietrucci F, et al. Ice VII from aqueous salt solutions: from a glass to a crystal with broken H-bonds. Sci Rep. 2016;6:32040.
  • Bellissent-Funel MC, Teixeira J, Bosio L. Structure of high-density amorphous water. II. Neutron scattering study. J Chem Phys. 1987;87:2231–2235.
  • Vrbka L, Jungwirth P. Brine rejection from freezing salt solutions: a molecular dynamics study. Phys Rev Lett. 2005;95:148501.
  • Ludl A-A, Bove LE, Li J, et al. Quenching device for electrolytic aqueous solutions. Eur Phys J Spec Top. 2017;226:1051–1063.
  • Ruiz GN, Amann-Winkel K, Bove LE, et al. Calorimetric study of water's two glass transitions in the presence of LiCl. Phys Chem Chem Phys. 2018;20:6401–6408.
  • Suzuki Y, Mishima O. Raman spectroscopic study of glassy water in dilute lithium chloride aqueous solution vitrified under pressure. J Chem Phys. 2002;117:1673–1676.
  • Frank MR, Runge CE, Scott HP, et al. Experimental study of the NaCl-H2O system up to 28 GPa: implications for ice-rich planetary bodies. Phys Earth Planet Inter. 2006;155:152–162.
  • Frank MR, Aarestad E, Scott HP, et al. A comparison of ice VII formed in the H2O, NaCl–H2O, and CH3OH–H2O systems: implications for H2O-rich planets. Phys Earth Planet Inter. 2013;215:12–20.
  • Frank MR, Scott HP, Aarestad E, et al. Potassium chloride-bearing ice VII and ice planet dynamics. Geochim Cosmochim Acta. 2016;174:156–166.
  • Journaux B, Daniel I, Petitgirard S, et al. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies. Earth Planet Sci Lett. 2017;463:36–47.
  • Watanabe M, Komatsu K, Noritake F, et al. Structural incorporation of MgCl2 into ice VII at room temperature. Jpn J Appl Phys. 2017;56:05FB3.
  • Song M, Yamawaki H, Fujihisa H, et al. Infrared absorption study of Fermi resonance and hydrogen-bond symmetrization of ice up to 141 GPa. Phys Rev B. 1999;60:12644–12650.
  • Benoit M, Marx D, Parrinello M. Tunnelling and zero-point motion in high-pressure ice. Nature. 1998;392:258–261.
  • Benoit M, Romero AH, Marx D. Reassigning hydrogen-bond centering in dense ice. Phys Rev Lett. 2002;89.
  • Ikeda S, Shibata K, Nakai Y, et al. Incoherent neutron scattering measurements on KDP. J Phys Soc Jpn. 1992;61:2619–2623.
  • Reiter GF, Mayers J, Platzman P. Direct observation of tunneling in KDP using neutron compton scattering. Phys Rev Lett. 2002;89:135505.
  • Somayazulu M, Shu JF, Zha CS, et al. In situ high-pressure x-ray diffraction study of H2O ice VII. J Chem Phys. 2008;128:064510.
  • Hirai H, Kadobayashi H, Matsuoka T, et al. High pressure X-ray diffraction and Raman spectroscopic studies of the phase change of D2O ice VII at approximately 11 GPa. High Press Res. 2014;34:289–296.
  • Kadobayashi H, Hirai H, Matsuoka T, et al. A possible existence of phase change of deuterated ice VII at about 11 GPa by X-ray and Raman studies. J Phys Conf Ser. 2014;500:182017.
  • Sugimura E, Iitaka T, Hirose K, et al. Compression of H2O ice to 126 GPa and implications for hydrogen-bond symmetrization: synchrotron x-ray diffraction measurements and density-functional calculations. Phys Rev B. 2008;77.
  • Hernandez JA, Caracas R. Proton dynamics and the phase diagram of dense water ice. J Chem Phys. 2018;148:214501.
  • Benoit M, Marx D. The shapes of protons in hydrogen bonds depend on the bond length. ChemPhysChem. 2005;6:1738–1741.
  • Méndez ASJ, Trybel F, Husband RJ, et al. Bulk modulus of H2O across the ice VII – ice X transition measured by time-resolved x-ray diffraction in dynamic diamond anvil cell experiments. Phys Rev B. 2021;103:064104.
  • Tsuchiya J, Tsuchiya T. First principles calculation of the elasticity of ice VIII and X. J Chem Phys. 2017;146:014501.
  • Meier T, Petitgirard S, Khandarkhaeva S, et al. Observation of nuclear quantum effects and hydrogen bond symmetrisation in high pressure ice. Nat Commun. 2018;9:2766.
  • Bove LE, Gaal R, Raza Z, et al. Effect of salt on the H-bond symmetrization in ice. Proc Nat Acad Sci. 2015;112:8216–8220.
  • Salzmann C, Kohl I, Loerting T, et al. The Raman spectrum of ice XII and its relation to that of a new “high-pressure phase of H2O ice”. J Phys Chem B. 2002;106:1–6.
  • Koza M, Schober H, Tölle A, et al. Formation of ice XII at different conditions. Nature. 1999;397:660–661.
  • Stern JN, Seidl-Nigsch M, Loerting T. Evidence for high-density liquid water between 0.1 and 0.3 GPa near 150 K. Proc Nat Acad Sci. 2019;116:9191–9196.
  • Kosyakov VI, Shestakov VA. On the possibility of the existence of a new ice phase under negative pressures. Dokl Phys Chem. 2001;376:49–51.
  • Kirchner MT, Boese R, Billups WE, et al. Gas hydrate single-crystal structure analyses. J Am Chem Soc. 2004;126:9407–9412.
  • Loveday JS, Nelmes RJ. High-pressure gas hydrates. Phys Chem Chem Phys. 2008;10:937–950.
  • Massani B, Conway LJ, Hermann A, et al. On a new nitrogen sX hydrate from ice XVII. J Chem Phys. 2019;151:104305.
  • Vatamanu J, Kusalik PG. Unusual crystalline and polycrystalline structures in methane hydrates. J Am Chem Soc. 2006;128:15588–15589.
  • Huang Y, Zhu C, Wang L, et al. A new phase diagram of water under negative pressure: the rise of the lowest-density clathrate s-III. Sci Adv. 2016;2:e1501010.
  • Russo J, Romano F, Tanaka H. New metastable form of ice and its role in the homogeneous crystallization of water. Nat Mater. 2014;13:733–739.
  • del Rosso L, Celli M, Ulivi L. Ice XVII as a novel material for hydrogen storage. Challenges. 2017;8:3.
  • Catti M, del Rosso L, Ulivi L, et al. Ne- and O2-filled ice XVII: a neutron diffraction study. Phys Chem Chem Phys. 2019;21:14671–14677.
  • Millot M, Hamel S, Rygg JR, et al. Experimental evidence for superionic water ice using shock compression. Nat Phys. 2018;14:297–302.
  • Roth M, Jung D, Falk K, et al. Bright laser-driven neutron source based on the relativistic transparency of solids. Phys Rev Lett. 2013;110:044802.
  • Klug DD, Handa YP, Tse JS, et al. Transformation of ice VIII to amorphous ice by “melting” at low temperature. J Chem Phys. 1989;90:2390–2392.
  • Mishima O, Stanley HE. Metastable melting lines of ice phases at low temperatures. Rev High Pressure Sci Technol. 1998;7:1103–1105.
  • Mochizuki K, Himoto K, Matsumoto M. Diversity of transition pathways in the course of crystallization into ice VII. Phys Chem Chem Phys. 2014;16:16419–16425.
  • Hirata M, Yagasaki T, Matsumoto M, et al. Phase diagram of TIP4P/2005 water at high pressure. Langmuir. 2017;33:11561–11569.
  • Yagasaki T, Matsumoto M, Tanaka H. Phase diagrams of TIP4P/2005, SPC/E, and TIP5P water at high pressure. J Phys Chem B. 2018;122:7718–7725.
  • Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44:1272–1276.
  • Queyroux JA, Hernandez JA, Weck G, et al. Melting curve and isostructural solid transition in superionic ice. Phys Rev Lett. 2020;125:195501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.