531
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Intrinsic disorder and flexibility in proteins: a challenge for structural biology and drug design

ORCID Icon
Pages 48-75 | Received 06 Mar 2023, Accepted 25 Apr 2023, Published online: 18 May 2023

References

  • Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181:223–230. doi:10.1126/science.181.4096.223
  • Dauter Z, Wlodawer A. Progress in protein crystallography. Protein Pept Lett. 2016;23:201–210. doi:10.2174/0929866523666160106153524
  • Burley SK, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021;49:D437–D451. doi:10.1093/nar/gkaa1038
  • Disham AF, Volman BF. Unfolding the mysteries of protein metamorphosis. ACS Chem. Biol. 2018;13:1438–1446. doi:10.1021/acschembio.8b00276
  • Tompa P, Dosztanyi Z, Simon I. Prevalent structural disorder in E. coli and S. cerevisiae proteomes. J Proteome Res. 2006;5:1996–2000. doi:10.1021/pr0600881
  • Dunker AK, Silman I, Uversky VN, et al. Function and structure of inherently disordered proteins. Curr Opin Struct Biol. 2008;18:756–764. doi:10.1016/j.sbi.2008.10.002
  • Ward JJ, Sodhi JS, McGuffin LJ, et al. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol. 2004;337:635–645. doi:10.1016/j.jmb.2004.02.002
  • Fukuchi S, Hosoda K, Homma K, et al. Binary classification of protein molecules into intrinsically disordered and ordered segments. BMC Struct Biol. 2014;11:29. doi:10.1186/1472-6807-11-29
  • Uversky VN, Dunker AK. Understanding protein non-folding. Biochim Biophys Acta. 2010;1804:1231–1264. doi:10.1016/j.bbapap.2010.01.017
  • Metallo SJ. Intrinsically disordered proteins are potential drug targets. Curr Opin Chem Biol. 2010;14:481–488. doi:10.1016/j.cbpa.2010.06.169
  • Trivedi R, Nagarajaram HA. Intrinsically disordered proteins: an overview. Int J Mol Sci. 2022;23:14050. doi:10.3390/ijms232214050
  • Handa T, Kundu D, Dubey VK. Perspectives on evolutionary and functional importance of intrinsically disordered proteins. Int J Biol Macromol. 2023;224:243–255. doi:10.1016/j.ijbiomac.2022.10.120
  • Uversky VN. Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 2002;11:739–756. doi:10.1110/ps.4210102
  • Ambadipudi S, Zweckstetter M. Targeting intrinsically disordered proteins in rational drug discovery. Expert Opin Drug Discov. 2016;11:65–77. doi:10.1517/17460441.2016.1107041
  • Ptitsyn OB. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi:10.1016/S0065-3233(08)60546-X
  • Uversky VN, Davé V, Iakoucheva LM, et al. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev. 2014;114:6844–6879. doi:10.1021/cr400713r
  • Huang A, Stultz CM. The effect of a Dk280 mutation on the unfolded state of a microtubule-binding repeat in Tau. PLoS Comput Biol. 2008;4:e1000155. doi:10.1371/journal.pcbi.1000155
  • Frauenfelder H, Sligar SG, Wolynes PG. The energy landscapes and motions of proteins. Science. 1991;254:1598–1603. doi:10.1126/science.1749933
  • Csizmok V, Follis AV, Kriwacki RW, et al. Dynamic protein interaction networks and new structural paradigms in signaling. Chem Rev. 2016;116:6424–6462. doi:10.1021/acs.chemrev.5b00548
  • Theivendren P, Kunjiappan S, Mariappa Hegde Y, et al. Importance of protein kinase and its inhibitor: a review. In: RK Singh, editor. Protein kinases. IntechOpen; 2021. p. 1–28.
  • Wallmann A, Kesten C. Common functions of disordered proteins across evolutionary distant organisms. Int J Mol Sci. 2020;21:2105. doi:10.3390/ijms21062105
  • Martinelli AHS, Lopes FC, John EBO. Modulation of disordered proteins with a focus on neurodegenerative diseases and other pathologies. Int J Mol Sci. 2019;20:1322. doi:10.3390/ijms20061322
  • Ramachandran PL, Lovett JE, Carl PJ, et al. The short-lived signaling state of the photoactive yellow protein photoreceptor revealed by combined structural probes. J Am Chem Soc. 2011;133:9395–9404. doi:10.1021/ja200617t
  • Uversky VN. A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci. 2013;22:693–724. doi:10.1002/pro.2261
  • Xie H, Vucetic S, Iakoucheva LM. Functional Anthology of Intrinsic Disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res. 2007;6:1917–1932. doi:10.1021/pr060394e
  • Djinovic-Carugo K, Carugo O. Missing strings of residues in protein crystal structures. Intrinsically Disord Proteins. 2015;3(1):e1095697. doi:10.1080/21690707.2015.1095697
  • Monzon AM, Necci M, Quaglia F, et al. Experimentally determined long intrinsically disordered protein regions are now abundant in the Protein Data Bank. Int J Mol Sci. 2020;21:4496. doi:10.3390/ijms21124496
  • Blundell TL, Gupta MN, Hasnain SE. Intrinsic disorder in proteins: relevance to protein assemblies, drug design and host-pathogen interactions. Prog Biophys Mol Biol. 2020;156:34–e42. doi:10.1016/j.pbiomolbio.2020.06.004
  • Seoane B, Carbone A. The complexity of protein interactions unraveled from structural disorder. PLoS Comput Biol. 2021;17:e1008546. doi:10.1371/journal.pcbi.1008546
  • Seoane B, Carbone A. Soft disorder modulates the assembly path of protein complexes. PLoS Comput Biol. 2022;18:e1010713. doi:10.1371/journal.pcbi.1010713
  • Lobanov MY, Galzitskaya OV. Disordered patterns in clustered protein data bank and in eukaryotic and bacterial proteomes. PLOSone. 2011;6:e27142. doi:10.1371/journal.pone.0027142
  • Lobanov MY, Likhachev IV, Galzitskaya OV. Disordered residues and patterns in the Protein Data Bank. Molecules. 2020;25:1522. doi:10.3390/molecules25071522
  • Bi X, Mancias JD, Goldberg J. Insights into CopII Coat Nucleation from the structure of Sec23-Sar1 complexed with the active fragment of Sec31. Dev Cell. 2007;13:635–645. doi:10.1016/j.devcel.2007.10.006
  • Zhou J, Oldfield CJ, Yan W, et al. Identification of intrinsic disorder in complexes from the Protein Data Bank. ACS Omega. 2020;5:17883–17891. doi:10.1021/acsomega.9b03927
  • Monzon AM, Bonato P, Necci M, et al. FLIPPER: predicting and characterizing linear interacting peptides in the Protein Data Bank. J Mol Biol. 2021;433:166900. doi:10.1016/j.jmb.2021.166900
  • Piovesan D, Monzon M, Quaglia F, et al. Databases for intrinsically disordered proteins. Acta Cryst. 2022;D78:144–151.
  • Davey NE, Babu MM, Blackledge M, et al. An intrinsically disordered proteins community for ELIXIR. F1000Res. 2019;8(ELIXIR):1753. doi:10.12688/f1000research.20136.1
  • Di Domenico T, Walsh I, Martin SJM, et al. MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics. 2012;28:2080–2081. doi:10.1093/bioinformatics/bts327
  • Hatos A, Hajdu-Soltész B, Monzon AM, et al. DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids Res. 2020;48:D269–D276.
  • Quaglia F, Mészáros B, Salladini E, et al. DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Res. 2022;50:D480–D487. doi:10.1093/nar/gkab1082
  • Fukuchi S, Amemiya T, Sakamoto S, et al. IDEAL in 2014 illustrates interaction networkscomposed of intrinsically disordered proteins and their binding partners. Nucleic Acids Res. 2014;42:D320–D325. doi:10.1093/nar/gkt1010
  • Miskei M, Antal C, Fuxreiter M. FuzDB: database of fuzzy complexes, a tool to develop stochastic structure-function relationships for protein complexes and higher-order assemblies. Nucleic Acids Res. 2017;45:D228–D235. doi:10.1093/nar/gkw1019
  • Hatos A, Monzon AM, Tosatto SCE, et al. FuzDB: a new phase in understanding fuzzy interactions. Nucleic Acids Res. 2022;50:D509–D517. doi:10.1093/nar/gkab1060
  • Schad E, Fichò E, Pancsa R, et al. DIBS: a repository of disordered binding sites mediating interactions with ordered proteins. Bioinformatics. 2018;34:535–537. doi:10.1093/bioinformatics/btx640
  • Fichò E, Reményi I, Simon I, et al. MFIB: a repository of protein complexes with mutual folding induced by binding. Bioinformatics. 2017;33:3682–3684. doi:10.1093/bioinformatics/btx486
  • Kumar M, Gouw M, Michael S, et al. ELM – the eukaryotic linear motif resource in 2020. Nucleic Acids Res. 2020;48:D296–D306.
  • Varadi M, Kosol S, Lebrun P, et al. pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Res. 2014;42:D326–D335. doi:10.1093/nar/gkt960
  • Lazar T, Martínez-Pérez E, Quaglia F, et al. PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res. 2021;49:D404–D411. doi:10.1093/nar/gkaa1021
  • The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–D489. doi:10.1093/nar/gkaa1100
  • The UniProt Consortium. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2022;51:D523–D531.
  • Hoch JC, Baskaran K, Burr H, et al. Biological magnetic resonance data bank. Nucleic Acids Res. 2023;51:D368–D376. doi:10.1093/nar/gkac1050
  • Chen C, Zabad S, Liu H, et al. MoonProt 2.0: an expansion and update of the moonlighting proteins database. Nucleic Acids Res. 2017;46:D640–D644. doi:10.1093/nar/gkx1043
  • Ruff KM, Pappu RV. AlphaFold and implications for intrinsically disordered proteins. J Mol Biol. 2021;433:167208. doi:10.1016/j.jmb.2021.167208
  • Stuart D, Subramaniam S, Abrescia N. The democratization of cryo-EM. Nat Methods. 2016;13:607–608. doi:10.1038/nmeth.3946
  • Dyson HJ, Wright PE. Perspective: the essential role of NMR in the discovery and characterization of intrinsically disordered proteins. J Biomol NMR. 2019;73:651–659. doi:10.1007/s10858-019-00280-2
  • Redfield C. Using nuclear magnetic resonance spectroscopy to study molten globule states of proteins. Methods. 2004;34:121–132. doi:10.1016/j.ymeth.2004.03.009
  • Lietzow MA, Jamin M, Dyson HJ, et al. Mapping long-range contacts in a highly unfolded protein. J Mol Biol. 2002;322:655–662. doi:10.1016/S0022-2836(02)00847-1
  • Krzeminski M, Marsh JA, Neale C, et al. Characterization of disordered proteins with ENSEMBLE. Bioinformatics. 2013;29:398–399. doi:10.1093/bioinformatics/bts701
  • Bernadò P, Svergun DI. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol BioSyst 2012;8:151–167. doi:10.1039/C1MB05275F
  • Kodera K, Ando T. Visualization of intrinsically disordered proteins by high-speed atomic force microscopy. Current Opinion Struct Biol. 2022;72:260–266. doi:10.1016/j.sbi.2021.11.014
  • Schuler B, Soranno A, Hofmann H, et al. Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu Rev Biophys. 2016;45:207–231. doi:10.1146/annurev-biophys-062215-010915
  • Zhu F, Kapitan J, Tranter GE, et al. Residual structure in disordered peptides and unfolded proteins from multivariate analysis and ab initio simulation of Raman optical activity data. Proteins. 2008;70:823–833. doi:10.1002/prot.21593
  • Nussinov R, Zhang M, Liu Y, et al. AlphaFold, Artificial Intelligence (AI), and allostery. J Phys Chem B. 2022;126:6372–6383. doi:10.1021/acs.jpcb.2c04346
  • Zhao B, Kurgan L. Surveying over 100 predictors of intrinsic disorder in proteins. Expert Rev Proteom. 2021;18(12):1019–1029. doi:10.1080/14789450.2021.2018304
  • Monastyrskyy B, Kryshtafovych A, Moult J, et al. Assessment of protein disorder region predictions in CASP10. Proteins. 2014;82:127–137. doi:10.1002/prot.24391
  • Necci M, Piovesan D, CAID Predictors, et al. Critical assessment of protein intrinsic disorder prediction. Nat Methods. 2021;18:472–481. doi:10.1038/s41592-021-01117-3
  • Kurgan L. Resources for computational prediction of intrinsic disorder in proteins. Methods. 2022;204:132–141. doi:10.1016/j.ymeth.2022.03.018
  • Das RK, Pappu RV. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. PNAS. 2013;110:13392–13397. doi:10.1073/pnas.1304749110
  • Gonçalves-Kulik M, Mier P, Kastano K, et al. Low complexity induces structure in protein regions predicted as intrinsically disordered. Biomolecules. 2022;12:1098. doi:10.3390/biom12081098
  • Hosoya Y, Ohkanda J. Intrinsically disordered proteins as regulators of transient biological processes and as untapped drug targets. Molecules. 2021;26:2118. doi:10.3390/molecules26082118
  • Oláh J, Szénási T, Lehotzky A, et al. Challenges in discovering drugs that target the protein–protein interactions of disordered proteins. Int J Mol Sci. 2022;23:1550. doi:10.3390/ijms23031550
  • Bier D, Thiel P, Briels J, et al. Stabilization of protein-protein interactions in chemical biology and drug discovery. Prog Biophys Mol Biol. 2015;119:10–e19. doi:10.1016/j.pbiomolbio.2015.05.002
  • Mollica L, Bessa LM, Hanoulle X, et al. Binding mechanisms of intrinsically disordered proteins: theory, simulation, and experiment. Front Mol Biosci. 2016;3:52. doi:10.3389/fmolb.2016.00052
  • Heller GT, Aprile FA, Vendruscolo M. Methods of probing the interactions between small molecules and disordered proteins. Cell Mol Life Sci. 2017;74:3225–3243. doi:10.1007/s00018-017-2563-4
  • Gong X, Zhang Y, Chen J. Advanced sampling methods for multiscale simulation of disordered proteins and dynamic interactions. Biomolecules. 2021;11:1416. doi:10.3390/biom11101416
  • Eliezer D. Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol. 2009;19:23–30. doi:10.1016/j.sbi.2008.12.004
  • Ruan H, Sun Q, Zhang W, et al. Targeting intrinsically disordered proteins at the edge of chaos. Drug Discov. 2019;24:217–227.
  • Sugase K, Dyson HJ, Wright PE. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature. 2007;447:1021–1027. doi:10.1038/nature05858
  • Tuttle LM, Pacheco D, Warfield L, et al. Gcn4-mediator specificity is mediated by a large and dynamic fuzzy protein-protein complex. Cell Rep. 2018;22:3251–3264. doi:10.1016/j.celrep.2018.02.097
  • Toto A, Malagrinò F, Visconti L, et al. Templated folding of intrinsically disordered proteins. J Biol Chem. 2020;295:6586–6593. doi:10.1074/jbc.REV120.012413
  • Fuxreiter M. Fuzziness in protein interactions – a historical perspective. J Mol Biol. 2018;430:2278–2287. doi:10.1016/j.jmb.2018.02.015
  • Fuxreiter M. Fuzzy protein theory for disordered proteins. Biochem Soc Trans. 2020;48:2557–2564. doi:10.1042/BST20200239
  • Fuxreiter M. Classifying the binding modes of disordered proteins. Int J Mol Sci. 2020;21:8615. doi:10.3390/ijms21228615
  • Borgia A, Borgia MB, Bugge K, et al. Extreme disorder in an ultrahigh-affinity protein complex. Nature. 2018;555:61–66. doi:10.1038/nature25762
  • Tompa P, Davey NE, Gibson TJ, et al. A million peptide motifs for the molecular biologist. Mol Cell. 2014;55:161–169. doi:10.1016/j.molcel.2014.05.032
  • Bugge K, Brakti I, Fernandes CB, et al. Interactions by disorder – a matter of context. Front Mol Biosci. 2020;7:110. doi:10.3389/fmolb.2020.00110
  • Berlow RB, Dyson HJ, Wright PE. Expanding the paradigm: intrinsically disordered proteins and allosteric regulation. J Mol Biol. 2018;430:2309–2320. doi:10.1016/j.jmb.2018.04.003
  • Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci. 2002;27:527–533. doi:10.1016/S0968-0004(02)02169-2
  • Tompa P. Multisteric regulation by structural disorder in modular signaling proteins: an extension of the concept of allostery. Chem Rev. 2014;114:6715–6732. doi:10.1021/cr4005082
  • Babu MM, van der Lee R, de Groot NS, et al. Intrinsically disordered proteins: regulation and disease. Current Opinion Struct Biol. 2011;21:432–440. doi:10.1016/j.sbi.2011.03.011
  • Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237–1251. doi:10.1016/j.cell.2013.02.014
  • Choudhary S, Lopus M, Hosur RV. Targeting disorders in unstructured and structured proteins in various diseases. Biophys Chem. 2022;281:106742. doi:10.1016/j.bpc.2021.106742
  • Iakoucheva LM, Brown CJ, Lawson JD, et al. Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol. 2002;323:573–584. doi:10.1016/S0022-2836(02)00969-5
  • Uversky VN. Intrinsically disordered proteins and their “mysterious” (meta)physics. Front Phys. 2020;7:10. doi:10.3389/fphy.2019.00010
  • Arkin M, Wells J. Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discov. 2004;3:301–317. doi:10.1038/nrd1343
  • Mohan A, Oldfield CJ, Radivojac P, et al. Analysis of molecular recognition features (MoRFs). J Mol Biol. 2006;362:1043–1059. doi:10.1016/j.jmb.2006.07.087
  • Cheng Y, Oldfield CJ, Meng J, et al. Mining α-helix-forming molecular recognition features (α-MoRFs) with cross species sequence alignments. Biochem. 2007;46:13468–13477. doi:10.1021/bi7012273
  • Garg A, Dabburu GR, Singhal N, et al. Investigating the disordered regions (MoRFs, SLiMs and LCRs) and functions of mimicry proteins/peptides in silico. PLoS ONE. 2022;17:e0265657. doi:10.1371/journal.pone.0265657
  • Li H, Pang Y, Liu B, et al. MoRF-FUNCpred: molecular recognition feature function prediction based on multi-label learning and ensemble learning. Front Pharmacol. 2022;13:856417. doi:10.3389/fphar.2022.856417
  • He H, Zhao J, Sun G. Computational prediction of MoRFs based on protein sequences and minimax probability machine. BMC Bioinformatics. 2019;20:529. doi:10.1186/s12859-019-3111-z
  • Na I, Choi S, Son SH, et al. Drug discovery targeting the disorder-to-order transition regions through the conformational diversity mimicking and statistical analysis. Int J Mol Sci. 2020;21:5248. doi:10.3390/ijms21155248
  • Chen CY-C, Tou WL. How to design a drug for the disordered proteins? Drug Discov. 2013;18:910–915.
  • Bhattacharya S, Lin X. Recent advances in computational protocols addressing intrinsically disordered proteins. Biomolecules. 2019;9:146. doi:10.3390/biom9040146
  • Chen Q-H, Krishnan VV. Identification of ligand binding sites in intrinsically disordered proteins with a differential binding score. Sci Rep. 2021;11:22583. doi:10.1038/s41598-021-00869-4
  • Wang J, Cao Z, Zhao L, et al. Novel strategies for drug discovery based on intrinsically disordered proteins (IDPs). Int J Mol Sci. 2011;12:3205–3219. doi:10.3390/ijms12053205
  • Salma P, Chhatbar C, Seshadri S. Intrinsically unstructured proteins: potential targets for drug discovery. Am J Infect Dis. 2009;5:133–141. doi:10.3844/ajidsp.2009.126.134
  • Morris DL, Cho KW, Zhou Y, et al. SH2B1 enhances insulin sensitivity by both stimulating the insulin receptor and inhibiting tyrosine dephosphorylation of insulin receptor substrate proteins. Diabetes. 2009;58:2039–2047. doi:10.2337/db08-1388
  • Biesaga M, Frigolé-Vivas M, Xavier Salvatella X. Intrinsically disordered proteins and biomolecular condensates as drug targets. Current Opinion Chem Biol. 2021;62:90–100. doi:10.1016/j.cbpa.2021.02.009
  • Hyman AA, Weber CA, Julicher F. Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol. 2014;30:39–58. doi:10.1146/annurev-cellbio-100913-013325
  • Klein IA, Boija A, Afeyan LK, et al. Partitioning of cancer therapeutics in nuclear condensates. Science. 2020;368:1386–1392. doi:10.1126/science.aaz4427
  • Zhang Z, Boskovic Z, Hussain MM, et al. Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation. eLife. 2015;4:e07777.
  • Sammak S, Zinzalla G. Targeting protein-protein interactions (PPIs) of transcription factors: challenges of intrinsically disordered proteins (IDPs) and regions (IDRs). Prog Biophys Mol Biol. 2015;119:41–46. doi:10.1016/j.pbiomolbio.2015.06.004
  • Bushweller JH. Targeting transcription factors in cancer – from undruggable to reality. Nat Rev Cancer. 2019;19:611–624. doi:10.1038/s41568-019-0196-7
  • Djulbegovic MB, Uversky VN. Expanding the understanding of the heterogeneous nature of melanoma with bioinformatics and disorder-based proteomics. Int J Biol Macromol. 2020;150:1281–1293. doi:10.1016/j.ijbiomac.2019.10.139
  • Santofimia–Castaño P, Rizzuti B, Xia Y, et al. Targeting intrinsically disordered proteins involved in cancer. Cell Mol Life Sci. 2020;77:1695–1707. doi:10.1007/s00018-019-03347-3
  • Minezaki Y, Homma K, Kinjo AR, et al. Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. J Mol Biol. 2006;359:1137–1149. doi:10.1016/j.jmb.2006.04.016
  • Pabo CO, Sauer RT. Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem. 1992;61:1053–1095. doi:10.1146/annurev.bi.61.070192.005201
  • Yu H, Lee H, Herrmann A, et al. Revisiting STAT3 signaling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14:737–746.
  • Dhanik A, McMurray JS, Kavraki LE. Binding modes of peptidomimetics designed to inhibit STAT3. Plos ONE. 2012;7:e51603. doi:10.1371/journal.pone.0051603
  • Furqan M, Akinleye A, Mukhi N, et al. STAT inhibitors for cancer therapy. J. Hematol. Oncol. 2013;6:90. doi:10.1186/1756-8722-6-90
  • Nair SK, Burley SK. X-ray structures of Myc-Max and Mad-Max recognizing DNA: molecular bases of regulation by proto-oncogenic transcription factors. Cell. 2003;112:193–205. doi:10.1016/S0092-8674(02)01284-9
  • Morton JP, Sansom OJ. MYC-y mice: from tumor initiation to therapeutic targeting of endogenous MYC. Mol Oncol. 2013;7:248–258. doi:10.1016/j.molonc.2013.02.015
  • Castell A, Yan Q, Fawkner K, et al. A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. Sci Rep. 2018;8:10064. doi:10.1038/s41598-018-28107-4
  • Madden K, de Araujo AD, Gerhardt M, et al. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer. 2021;20:3. doi:10.1186/s12943-020-01291-6
  • Clevers H. Wnt/β-Catenin signaling in development and disease. Cell. 2006;127:469–480. doi:10.1016/j.cell.2006.10.018
  • Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75. doi:10.4161/org.4.2.5851
  • Poy F, Lepourcelet M, Shivdasani RA, et al. Structure of a human Tcf4-beta-catenin complex. Nat Struct Biol. 2001;8:1053–1057. doi:10.1038/nsb720
  • Zhang M, Catrow JL, Ji H. High-throughput selectivity assays for small-molecule inhibitors of β–catenin/T-cell factor protein–protein interactions. ACS Med Chem Lett. 2013;4:306–311. doi:10.1021/ml300367f
  • Hallenbeck KK, Turner DM, Renslo AR, et al. Targeting non-catalytic cysteine residues through structure-guided drug discovery. Curr Top Med Chem. 2017;17:4–15. doi:10.2174/1568026616666160719163839
  • Keating GM. Afatinib: a review in advanced non-small cell lung cancer. Target Oncol. 2016;11:825–835. doi:10.1007/s11523-016-0465-2
  • Lee P, Kistler KD, Douyon L, et al. Systematic literature review of real-world effectiveness results data for first-line ibrutinib in chronic lymphocytic leukemia and small lymphocytic lymphoma. Drugs Real World Outcomes. 2023;10:11–22. doi:10.1007/s40801-022-00332-4
  • Irwin DJ, Lee VM-Y, Trojanowski JQ, et al. Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci. 2013;14:626–636. doi:10.1038/nrn3549
  • Coskuner–Weber O, Mirzanli O, Uversky VM. Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev. 2022;14:679–707. doi:10.1007/s12551-022-00968-0
  • Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–366. doi:10.1146/annurev.biochem.75.101304.123901
  • KnausKJ MM, Swietnicki W. Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol. 2001;8:770–774. doi:10.1038/nsb0901-770
  • Westergard L, Heather M, Christensen HM, et al. The cellular prion protein (PrPC): Its physiological function and role in disease. Biochim Biophys Acta. 2007;1772:629–644. doi:10.1016/j.bbadis.2007.02.011
  • Kovacech B, Skrabana R, Novak M. Transition of Tau protein from disordered to misordered in Alzheimer’s disease. Neurodegener Dis. 2010;7:24–27. doi:10.1159/000283478
  • Twohig D, Nielsen HM. α-synuclein in the pathophysiology of Alzheimer’s disease. Mol Neurodegeneration. 2019;14:23. doi:10.1186/s13024-019-0320-x
  • Murphy MP, LeVine H. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis. 2010;19:311–323. doi:10.3233/JAD-2010-1221
  • Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216:136–144. doi:10.1126/science.6801762
  • Gomez-Gutierrez R, Morales R. The prion-like phenomenon in Alzheimer’s disease: evidence of pathology transmission in humans. PLoS Pathog. 2020;16:e1009004. doi:10.1371/journal.ppat.1009004
  • Dobson CM. Protein folding and misfolding. Nature. 2003;426:884–890. doi:10.1038/nature02261
  • Monsellier E, Chiti F. Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep. 2007;8:737–742. doi:10.1038/sj.embor.7401034
  • Tartaglia GG, Pechmann S, Dobson CM, et al. Life on the edge: a link between gene expression levels and aggregation rates of human proteins. Trends Biochem Sci. 2007;32:204–206. doi:10.1016/j.tibs.2007.03.005
  • Sturchio A, Dwivedi AK, Young CB, et al. High cerebrospinal amyloid-β 42 is associated with normal cognition in individuals with brain amyloidosis. EClinicalMedicine. 2021;38:100988. doi:10.1016/j.eclinm.2021.100988
  • Sevigny J, Chiao P, Bussière T, et al. The antibody Aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537:50–56. doi:10.1038/nature19323

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.