115
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Host–guest complexes in the crystal land: a plethora of crystal forms and crystallization peculiarities

ORCID Icon
Pages 5-30 | Received 30 Jun 2023, Accepted 22 Jan 2024, Published online: 13 Feb 2024

References

  • Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angew Chem Int Ed. 2015;54:3290–3327. doi:10.1002/anie.201408487
  • Scelle J, Vervoitte H, Bouteiller L, et al. Size-dependent compression of threaded alkyldiphosphate in head to head cyclodextrin [3]pseudorotaxanes. Chem Sci. 2022;13:2218–2225. doi:10.1039/D1SC05697B
  • Shi Q, Wang X, Liu B, et al. Macrocyclic host molecules with aromatic building blocks: the state of the art and progress. Chem Commun. 2021;57:12379–12405. doi:10.1039/D1CC04400A
  • Escobar L, Ballester P. Molecular recognition in water using macrocyclic synthetic receptors. Chem Rev. 2021;121(4):2445–2514. doi:10.1021/acs.chemrev.0c00522
  • Sinawang G, Osaki M, Takashima Y, et al. Supramolecular self-healing materials from non-covalent cross-linking host–guest interactions. Chem Commun. 2020;56:4381–4395. doi:10.1039/D0CC00672F
  • Ma X, Zhao Y. Biomedical applications of supramolecular systems based on host-guest interactions. Chem Rev. 2015;115(15):7794–7839. doi:10.1021/cr500392w
  • Guo SW, Huang QX, Chen Y, et al. Synthesis and bioactivity of guanidinium-functionalized pillar[5]arene as a biofilm disruptor. Angew Chem Int Ed. 2021;60:618–623. doi:10.1002/anie.202013975
  • Liu JB, Lu XH, Wu TT, et al. Branched antisense and siRNA co-assembled nanoplatform for combined gene silencing and tumor therapy. Angew Chem Int Ed. 2021;60:1853–1860. doi:10.1002/anie.202011174
  • Huang T, Alyami M, Kashab NM, et al. Engineering membranes with macrocycles for precise molecular separations. J Mater Chem A. 2021;9:18102–18128. doi:10.1039/D1TA02982G
  • Roy I, Bobbala S, Young RM, et al. ExTzBox: a glowing cyclophane for live-cell imaging. J Am Chem Soc. 2018;140(23):7206–7212. doi:10.1021/jacs.8b03066
  • Yang JM, Yu Y, Rebek Jr J. Selective macrocycle formation in cavitands. J Am Chem Soc. 2021;143(5):2190–2193. doi:10.1021/jacs.0c12302
  • Shan PH, Hu JH, Liu M, et al. Progress in host–guest macrocycle/pesticide research: recognition: detection, release and application. Coord Chem Rev. 2022;467:214580. doi:10.1016/j.ccr.2022.214580
  • Alsbaiee A, Smith BJ, Xiao LL, et al. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature. 2016;529:190–194. doi:10.1038/nature16185
  • Erbas-Cakmak S, Leigh DA, McTernan CT, et al. Artificial molecular machines. Chem Rev. 2015;115(18):10081–10206. doi:10.1021/acs.chemrev.5b00146
  • Engilberge S, Rennie ML, Dumont E, et al. Tuning protein frameworks via auxiliary supramolecular interactions. ACS Nano. 2019;13(9):10343–10350. doi:10.1021/acsnano.9b04115
  • Crini G. Review: a history of cyclodextrins. Chem Rev. 2014;114(21):10940–10975. doi:10.1021/cr500081p
  • Gokel GW, Leevy WM, Weber ME. Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem Rev. 2004;104(5):2723–2750. doi:10.1021/cr020080k
  • Ikeda A, Shinkai S. Novel cavity design using calix[n]arene skeletons: toward molecular recognition and metal binding. Chem Rev. 1997;97(5):1713–1734. doi:10.1021/cr960385x
  • Freeman WA, Mock WL, Shih NY. Cucurbituril. J Am Chem Soc. 1981;103(24):7367–7368. doi:10.1021/ja00414a070
  • Odell B, Reddington MV, Slawin AMZ, et al. Cyclobis(paraquat-p-phenylene). A tetracationic multipurpose receptor. Angew Chem Int Ed. 1988;27(11):1547–1550. doi:10.1002/anie.198815471
  • Ogosh T, Yamagishi T, Nakamoto Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem Rev. 2016;116(14):7937–8002. doi:10.1021/acs.chemrev.5b00765
  • Dsouza RN, Pischel U, Nau WM. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev. 2011;111(12):7941–7980. doi:10.1021/cr200213s
  • Zhou Y, Jie K, Zhao R, et al. Supramolecular-macrocycle-based crystalline organic materials. Adv Mater. 2020;32(20):1904824. doi:10.1002/adma.201904824
  • Ananchenko GS, Udachin KA, Dubes A, et al. Guest exchange in single crystals of van der Waals nanocapsules. Angew Chem Int Ed. 2006;45(10):1585–1588. doi:10.1002/anie.200503553
  • Lim S, Kim H, Selvapalam N, et al. Cucurbit[6]uril: organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. Angew Chem Int Ed. 2008;47(18):3352–3355. doi:10.1002/anie.200800772
  • Tsue H, Ishibashi K, Tokita S, et al. Azacalix[6]arene hexamethyl ether: synthesis: structure, and selective uptake of carbon dioxide in the solid state. Chem Eur J. 2008;14(20):6125–6134. doi:10.1002/chem.200800502
  • Yang X, Li C, Giorgi M, et al. Energy-efficient iodine uptake by a molecular host·guest crystal. Angew Chem Int Ed. 2022;61:e202214039. doi:10.1002/anie.202214039
  • Atwood JL, Barbour LJ, Jerga A, et al. Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science. 2002;298:1000–1002. doi:10.1126/science.1077591
  • Dalgarno SJ, Thallapally PK, Barbour LJ, et al. Engineering void space in organic van der Waals crystals: calixarenes lead the way. Chem Soc Rev. 2007;36:236–245. doi:10.1039/b606047c
  • Jie K, Liu M, Zhou Y, et al. Near-ideal xylene selectivity in adaptive molecular pillar[n]arene crystals. J Am Chem Soc. 2018;140(22):6921–6930. doi:10.1021/jacs.8b02621
  • Jie K, Zhou Y, Li E, et al. Separation of aromatics/cyclic aliphatics by nonporous adaptive pillararene crystals. Angew Chem Int Ed. 2018;57(39):12845–12849. doi:10.1002/anie.201808998
  • Liu H, Lin M, Cui Y, et al. Single-crystal structures of cucurbituril-based supramolecular host–guest complexes for bioimaging. Chem Commun. 2021;57:10190–10193. doi:10.1039/D1CC04823F
  • Ferdowsi P, Steiner U, Milić JV. Host-guest complexation in hybrid perovskite optoelectronics. J. Phys Mater. 2021;4:042011. doi:10.1088/2515-7639/ac299f
  • Dong H, Zhang C, Zhao YS. Host–guest composite organic microlasers. J Mater Chem C. 2017;5:5600–5609. doi:10.1039/C6TC05474A
  • Dupont N, Lazar AN, Perret F, et al. Solid state structures of the complexes between the antiseptic chlorhexidine and three anionic derivatives of calix[4]arene. Cryst Eng Comm. 2008;10:975–977. doi:10.1039/b805317k
  • Panigrahi SD, Mayhan CM, Dar AA, et al. Supramolecule-driven host−guest co-crystallization of cyclic polyphenols with anti-fibrotic pharmaceutical drug. Cryst Growth Des. 2023;23(3):1378–1388. doi:10.1021/acs.cgd.2c00895
  • Rissanen K. Crystallography of encapsulated molecules. Chem Soc Rev. 2017;46:2638–2648. doi:10.1039/C7CS00090A
  • Mukhopadhyay P, Zavalij PY, Isaacs L. High fidelity kinetic self-sorting in multi-component systems based on guests with multiple binding epitopes. J Am Chem Soc. 2006;128(43):14093–14102. doi:10.1021/ja063390j
  • Tootoonchi MH, Yi S, Kaifer AE. Detection of isomeric microscopic host−guest complexes. A time-evolving cucurbit[7]uril complex. J Am Chem Soc. 2013;135(29):10804–10809. doi:10.1021/ja404797y
  • Yang LP, Zhang L, Quan M, et al. A supramolecular system that strictly follows the binding mechanism of conformational selection. Nat Commun. 2020;11:2740. doi:10.1038/s41467-020-16534-9
  • Butkiewicz H, Kosiorek S, Sashuk V, et al. Inclusion of pentamidine in carboxylated pillar[5]arene: late sequential crystallization and diversity of host-guest interactions. Cryst. Growth Des. 2022;22(5):2854–2862. doi:10.1021/acs.cgd.1c01201
  • Caira MR, de Vries EJC, Nassimbeni LR. Crystallization of two forms of a cyclodextrin inclusion complex containing a common organic guest. Chem Commun. 2003: 2058–2059. doi:10.1039/b305784b
  • Fernandes JA, Ramos AI, Ribeiro-Claro P, et al. Studies on polymorph conversion in a new cyclodextrin inclusion compound. Cryst Eng Comm. 2015;17:937–946. doi:10.1039/C4CE02041C
  • Verteramo ML, Stenström O, Ignjatović MM, et al. Interplay between conformational entropy and solvation entropy in protein-ligand binding. J Am Chem. Soc. 2019;141(5):2012–2026. doi:10.1021/jacs.8b11099
  • Schiebel J, Gaspari R, Wulsdorf T, et al. Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nat Commun. 2018;9:3559. doi:10.1038/s41467-018-05769-2
  • Kubik S. When molecules meet in water-recent contributions of supramolecular chemistry to the understanding of molecular recognition processes in water. Chemistry Open. 2022;11(4):e2022000.
  • Hickey N, Medagli B, Pedrini A, et al. Methyl hexadecyl viologen inclusion in cucurbit[8]uril: coexistence of three host−guest complexes with different stoichiometry in a highly hydrated crystal. Cryst Growth Des. 2021;21(7):3650–3655. doi:10.1021/acs.cgd.1c00463
  • Assouma CD, Crochet A, Chrmond Y, et al. Kinetics of ion transport through supramolecular channels in single crystals. Angew Chem Int Ed. 2013;52(17):4682–4685. doi:10.1002/anie.201208195
  • Ostwald W. Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z Phys Chem. 1897;22:289–330. doi:10.1515/zpch-1897-2233
  • Cardew PT, Davey RJ. The Ostwald ratio: kinetic phase diagrams, and polymorph maps. Cryst Growth Des. 2019;19(10):5798–5810. doi:10.1021/acs.cgd.9b00815
  • Cardew PT. Ostwald rule of stages – myth or reality? Cryst Growth Des. 2023;23(6):3958–3969. doi:10.1021/acs.cgd.2c00141
  • Danylyuk O, Fedin VP, Sashuk V. Kinetic trapping of the host-guest association intermediate and its transformation into a thermodynamic inclusion complex. Chem Commun. 2013;49:1859–1861. doi:10.1039/c3cc37868c
  • Wang X, Wicher B, Ferrand Y, et al. Orchestrating directional molecular motions: kinetically controlled supramolecular pathways of a helical host on rodlike guests. J Am Chem Soc. 2017;139(27):9350–9358. doi:10.1021/jacs.7b04884
  • Liu L, Nouvel N, Scherman OA. Controlled catch and release of small molecules with cucurbit[6]uril via a kinetic trap. Chem Commun. 2009: 3243–3245. doi:10.1039/b903033f
  • Cram DJ, Tanner ME, Knobler CB. Host-guest complexation. 58. Guest release and capture by hemicarcerands introduces the phenomenon of constrictive binding. J Am Chem Soc. 1991;113(20):7717–7727. doi:10.1021/ja00020a039
  • Badjic D, Cantrill SJ, Stoddart JF. Can multivalency be expressed kinetically? The answer is yes. J Am Chem Soc. 2004;126(8):2288–2289. doi:10.1021/ja0395285
  • Kravets K, Kravets M, Kędra K, et al. P-Sulfonatocalix[8]arene coordinates sodium cations and forms host-guest complex with berberine: insight from crystal structure. Supramol Chem. 2021;33:666–676. doi:10.1080/10610278.2022.2161901
  • Beatty MA, Hof F. Host–guest binding in water: salty water, and biofluids: general lessons for synthetic, bio-targeted molecular recognition. Chem Soc Rev. 2021;50:4812–4832. doi:10.1039/D0CS00495B
  • Thomas SS, Tang H, Bohne C. Noninnocent role of Na+ ions in the binding of the N–phenyl-2-naphthylammonium cation as a ditopic guest with cucurbit[7]uril. J Am Chem Soc. 2019;141(24):9645–9654. doi:10.1021/jacs.9b03691
  • Garcia-Rio L, Basílio N, Francisco V. Counterion effect on sulfonatocalix[n]arene recognition. Pure Appl Chem. 2020;92(1):25–37. doi:10.1515/pac-2019-0305
  • Bakirci H, Koner AL, Dickman MH, et al. Dynamically self-assembling metalloenzyme models based on calixarenes. Angew Chem Int Ed. 2006;45(44):7400–7404. doi:10.1002/anie.200602999
  • Atwood JL, Barbour LJ, Hardie MJ, et al. Metal sulfonatocalix[4,5]arene complexes: bi-layers: capsules, spheres, tubular arrays and beyond. Coord Chem Rev. 2001;222(1):3–32. doi:10.1016/S0010-8545(01)00345-9
  • Danylyuk O, Fedin VP. Unexpected crystallization of the metastable tubular coordination polymer of cucurbit[6]uril with magnesium ions which spontaneously transforms into a discrete coordination complex. Cryst Eng Comm. 2014;16:3699–3702. doi:10.1039/C3CE42287A
  • Fucke K, Anderson KM, Filby MH, et al. The structure of water in p-sulfonatocalix[4]arene. Chem Eur J. 2011;17(37):10259–10271. doi:10.1002/chem.201101748
  • Danylyuk O, Leśniewska B, Suwinska K, et al. Structural diversity in the crystalline complexes of para-sulfonato-calix[4]arene with bipyridinium derivatives. Cryst Growth Des. 2010;10(10):4542–4549. doi:10.1021/cg100831c
  • Leśniewska B, Coleman AW, Tauran Y, et al. Pseudopolymorphs – a variety of self-organization of para-sulphonato-calix[8]arene and phenanthroline in the solid state. Cryst Eng Comm. 2016;18:8858–8870. doi:10.1039/C6CE01753C
  • Sala A, Hoossen Z, Bacchi A, et al. Two crystal forms of a hydrated 2:1 β-cyclodextrin fluconazole complex: single crystal X-ray structures: dehydration profiles, and conditions for their individual isolation. Molecules. 2021;26(15):4427. doi:10.3390/molecules26154427
  • Aree T, Chaichit N, Engkakul C. Polymorphism in β-cyclodextrin-benzoic acid inclusion complex: a kinetically controlled crystal growth according to the Ostwald’s rule. Carbohydr Res. 2008;343(14):2451–2458. doi:10.1016/j.carres.2008.06.032
  • Aree T. Inclusion scenarios and conformational flexibility of the SSRI paroxetine as perceived from polymorphism of β-cyclodextrin–paroxetine complex. Pharmaceuticals. 2022;15(1):98. doi:10.3390/ph15010098
  • Coleman AW, Bott SG, Morley SD, et al. Novel layer structure of sodium calix[4]arene sulfonate complexes – a class of organic clay mimics. Angew Chem Int Ed. 1988;27:1361–1362. doi:10.1002/anie.198813611
  • Steed JW, Johnston CP, Barnes CL, et al. Supramolecular chemistry of p-sulfonatocalix[5]arene: a water-soluble: bowl-shaped host with a large molecular cavity. J Am Chem Soc. 1995;117(46):11426–11433. doi:10.1021/ja00151a006
  • Liu Y, Zhou F, Yang F, et al. Carboxylated pillar[n]arene (n = 5–7) host molecules: high affinity and selective binding in water. Org Biomol Chem. 2019;17:5106–5111. doi:10.1039/C9OB00684B
  • Murray J, Kim K, Ogoshi T, et al. The aqueous supramolecular chemistry of cucurbit[n]urils: pillar[n]arenes and deep-cavity cavitands. Chem Soc Rev. 2017;46:2479–2496. doi:10.1039/C7CS00095B
  • Choi S, Mukhopadhyay RD, Kim Y, et al. Fuel-driven transient crystallization of a cucurbit[8]uril-based host-guest complex. Angew Chem Int Ed. 2019;58(47):16850–18853. doi:10.1002/anie.201910161
  • Yang X, Cheng Q, Monnier V, et al. Guest exchange by a partial energy ratchet in water. Angew Chem Int Ed. 2021;60(12):6617–6623. doi:10.1002/anie.202014399
  • Jung S, Kim SY, Lee E, et al. New cucurbituril homologues: syntheses: isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J Am Chem Soc. 2000;122(3):540–541. doi:10.1021/ja993376p
  • Cheng XJ, Liang LL, Chen K, et al. Twisted cucurbit[14]uril. Angew Chem Int Ed. 2013;52(28):7252–7255. doi:10.1002/anie.201210267
  • Barrow SJ, Kasera S, Rowland MJ, et al. Cucurbituril-based molecular recognition. Chem Rev. 2015;115(22):12320–12406. doi:10.1021/acs.chemrev.5b00341
  • Chen K, Hua ZY, Zhao JL, et al. Construction of cucurbit[n]uril-based supramolecular frameworks via host–guest inclusion and functional properties thereof. Inorg Chem Front. 2022;9:2753–2809. doi:10.1039/D2QI00513A
  • Huang Y, Gao RH R, Ni XL, et al. Cucurbit[n]uril-based supramolecular frameworks assembled through the outer surface interactions and their functional properties. Angew Chem Int Ed 2021;60(28):15166–15191. doi:10.1002/anie.202002666
  • Gerasko OA, Sokolov MN, Fedin VP. Mono-and polynuclear aqua complexes and cucurbit[6]uril: versatile building blocks for supramolecular chemistry. Pure Appl Chem. 2004;76(9):1633–1646. doi:10.1351/pac200476091633
  • Lü J, Lin JX, Cao MN, et al. Cucurbituril: a promising organic building block for the design of coordination compounds and beyond. Coord Chem Rev. 2013;257:1334–1356. doi:10.1016/j.ccr.2012.12.014
  • Ni XL, Xiao X, Cong H, et al. Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chem Soc Rev. 2013;42:9480–9508. doi:10.1039/c3cs60261c
  • Gao RH, Huang Y, Chen K, et al. Cucurbit[n]uril/metal ion complex-based frameworks and their potential applications. Coord Chem Rev. 2021;437:213741. doi:10.1016/j.ccr.2020.213741
  • Zeng JP, Cong H, Chen K, et al. A novel strategy to assemble achiral ligands to chiral helical polyrotaxane structures. Inorg Chem. 2011;50(14):6521–6525. doi:10.1021/ic200850r
  • Zhang XD, Zhao Y, Chen K, et al. Cucurbit[7]uril-based metal–organic rotaxane framework for dual-capture of molecular iodine and cationic potassium ion. Chem Eur J. 2020;26(10):2154–2158. doi:10.1002/chem.201905156
  • Hoffmann R, Knoche W, Fenn C, et al. Host-guest complexes of cucurbituril with the 4-methylbenzylammonium ion, alkali-metal cations and NH4+. J Chem Soc Faraday Trans. 1994;90:1507–1511. doi:10.1039/FT9949001507
  • Marquez C, Nau WM. Two mechanisms of slow host-guest complexation between cucurbit[6]uril and cyclohexylmethylamine: pH-responsive supramolecular kinetics. Angew Chem Int Ed. 2001;40(17):3155–3160. doi:10.1002/1521-3773(20010903)40:17<3155::AID-ANIE3155>3.0.CO;2-7
  • Biedermann F, Uzunova VD, Scherman OA, et al. Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J Am Chem Soc. 2012;134(37):15318–15323. doi:10.1021/ja303309e
  • Danylyuk O, Worzakowska M, Osypiuk-Tomasik J, et al. Solution-mediated and single-crystal to single-crystal transformations of cucurbit[6]uril host-guest complexes with dopamine. Cryst Eng Comm. 2020;22:634–638. doi:10.1039/C9CE01743G
  • Young T, Abel R, Kim B, et al. Motifs for molecular recognition exploiting hydrophobic enclosure in protein–ligand binding. PNAS. 2007;104(3):808–813. doi:10.1073/pnas.0610202104
  • Wu JY, Hsiao CC, Chiang MH. Concomitant crystallization of genuine supramolecular isomeric rhombus grid and ribbon. Cryst Growth Des. 2014;14(9):4321–4328. doi:10.1021/cg500380v
  • Masaoka S, Tanaka D, Nakanishi Y, et al. Reaction-temperature-dependent supramolecular isomerism of coordination networks based on the organometallic building block [CuI2(μ2-BQ)(μ2-OAc)2]. Angew Chem Int Ed. 2004;43(19):2530–2534. doi:10.1002/anie.200353463
  • Henzler-Wildman K, Kern D. Dynamic personalities of proteins. Nature. 2007;450:964–972. doi:10.1038/nature06522
  • Chen WJ, Yu DH, Xiao X, et al. Difference of coordination between alkali- and alkaline-earth-metal ions to a symmetrical α,α’,δ,δ’ -tetramethylcucurbit[6]uril. Inorg Chem. 2011;50:6956–6964. doi:10.1021/ic200109s
  • Danylyuk O, Fedin VP. Solid-state supramolecular assemblies of tryptophan and tryptamine with cucurbit[6]uril. Cryst Growth Des. 2012;12:550–555. doi:10.1021/cg2013914
  • Danylyuk O, Fedin VP, Sashuk V. Host–guest complexes of cucurbit[6]uril with isoprenaline: the effect of the metal ion on the crystallization pathway and supramolecular architecture. Cryst Eng Comm. 2013;15:7414–7418. doi:10.1039/c3ce41236a
  • Danylyuk O. Host–guest complexes of cucurbit[6]uril with phenethylamine-type stimulants. Cryst Eng Comm. 2018;20:7642–7647. doi:10.1039/C8CE01661E
  • Danylyuk O, Butkiewicz H, Sashuk V. Host–guest complexes of cucurbit[6]uril with the trypanocide drug diminazene and its degradation product 4-aminobenzamidine. Cryst Eng Comm. 2016;18:4905–4908. doi:10.1039/C6CE00257A
  • Campbell M, Prankerd RJ, Davie AS, et al. Degradation of berenil (diminazene aceturate) in acidic aqueous solution. J Pharm Pharmacol. 2004;56(10):1327–1332. doi:10.1211/0022357044409
  • Sashuk V, Butkiewicz H, Fialkowski M, et al. Triggering autocatalytic reaction by host–guest interactions. Chem Commun. 2016;52:4191–4194. doi:10.1039/C5CC10063A
  • Danylyuk O, Butkiewicz H, Coleman AW, et al. Solvent control in the formation of supramolecular host–guest complexes of isoniazid with p-sulfonatocalix[4]arene. Cryst Eng Comm. 2015;17:1745–1749. doi:10.1039/C4CE02383H
  • Yu G, Xue M, Zhang Z, et al. A water-soluble pillar[6]arene: synthesis: host−guest chemistry, and its application in dispersion of multiwalled carbon nanotubes in water. J Am Chem Soc. 2012;134(32):13248–133251. doi:10.1021/ja306399f
  • Deng CL, Cheng M, Zavalij PY, et al. Thermodynamics of pillararene·guest complexation: blinded dataset for the SAMPL9 challenge. New J Chem. 2022;46:995–1002. doi:10.1039/D1NJ05209H
  • Danylyuk O, Sashuk V. Solid-state assembly of carboxylic acid substituted pillar[5]arene and its host–guest complex with tetracaine. Cryst Eng Comm. 2015;17:719–722. doi:10.1039/C4CE02093F
  • Butkiewicz H, Kosiorek S, Sashuk V, et al. Unveiling the structural features of the host–guest complexes of carboxylated pillar[5]arene with viologen derivatives. Cryst Eng Comm. 2021;23:1075–1082. doi:10.1039/D0CE01579B
  • Butkiewicz H, Sashuk V, Danylyuk O. Incorporation of carboxylated pillar[5]arene and strontium(II) into supramolecular coordination complexes of different nuclearities. Cryst Eng Comm. 2021;23:3265–3269. doi:10.1039/D1CE00334H
  • Butkiewicz H, Kosiorek S, Sashuk V, et al. Carboxylated pillar[6]arene emulates pillar[5]arene in the host−guest crystal complexes and shows conformational flexibility in the solution/gas phase. Cryst Growth Des. 2023;23(1):11–18. doi:10.1021/acs.cgd.2c01135
  • Ulrich J, Pietzsch M. What is a protein crystal? Can we apply the terminology of classical industrial crystallization to them? Cryst Res Technol. 2015;50(7):560–565. doi:10.1002/crat.201500057
  • Mockler NM, Ramberg KO, Crowley PB. Protein–macrocycle polymorphism: crystal form IV of the Ralstonia solanacearum lectin–sulfonato-calix[8]arene complex. Acta Cryst. 2023;D79:624–631.
  • Karimi-Jafari M, Padrela L, Walker GM, et al. Creating cocrystals: a review of pharmaceutical cocrystal preparation routes and applications. Cryst Growth Des. 2018;18(10):6370–6387. doi:10.1021/acs.cgd.8b00933
  • Yang LP, Zhang L, Quan M, et al. Supramolecular system that strictly follows the binding mechanism of conformational selection. Nat Commun. 2020;11:2740. doi:10.1038/s41467-020-16534-9
  • Pierri G, Corno M, Macedi E, et al. Solid-state conformational flexibility at work: energetic landscape of a single crystal-to-single crystal transformation in a cyclic hexapeptoid. Cryst Growth Des. 2021;21(2):897–907. doi:10.1021/acs.cgd.0c01244
  • Malinska M. Temperature- and solvent-induced crystal-form transformations of the pyridine@p-tert-butylcalix[6]arene host-guest system. Cryst Growth Des. 2021;21(2):1103–1112. doi:10.1021/acs.cgd.0c01422
  • Yan Y, Huang J, Tang ZB. Kinetic trapping – a strategy for directing the self-assembly of unique functional nanostructures. Chem Commun. 2016;52:11870–11884. doi:10.1039/C6CC03620A
  • Evans JD, Bon V, Senkovska I, et al. Four-dimensional metal-organic frameworks. Nature Commun. 2020;11:2690. doi:10.1038/s41467-020-16527-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.