169
Views
7
CrossRef citations to date
0
Altmetric
Articles

Optimized Production of Tannase from Cashew Testa using Aspergillus niger MTCC 5898

, , , &

References

  • Bajpai, B., Patil, S. (2008). A new approach to microbial production of gallic acid. Braz. J. Microbiol. 39:708–711.
  • Beena, P.S., Soorej, M.B., Elyas, K.K., Sarita, G.B., Chandrasekaran, M. (2010). Acidophilic tannase from marine Aspergillus awamori BTMFW032. J. Microbiol. Biotechnol. 20:1403–1414
  • Beniwal, V., Goel, G., Kumar, A., Chhokar, V. (2013). Production of tannase through solid state fermentation using Indian Rosewood (Dalbergia Sissoo) sawdust-a timber industry waste. Ann. Microbiol. 63:583–590.
  • Box, G.E.P., Behnken, D.W. (1960). Some new three level designs for the study of quantitative variables. Technometrics. 2:455–475.
  • Couto, S.R., Sanroman, M.A. (2006). Application of solid-state fermentation to food industry a review. J. Food Eng. 76:291–302.
  • Dilipkumar, M., Rajasimman, M., Rajamohan, N. (2011). Application of statistical design for the production of inulinase by Streptomyces sp. using pressmud. Front. Chem. Sci. Eng. 5:463–470.
  • Mannan, S., Fakhru’l-Razi, A., Alam, M.Z. (2007). Optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum, using response surface methodology. J. Environ. Sci. 19:23–28.
  • Mohan, S.K., Viruthagiri, T., Arunkumar, C. (2014). Statistical optimization of process parameters for the production of tannase by Aspergillus flavus under submerged fermentation. 3 Biotech. 4:159–166.
  • Mohapatra, P.K.D., Maity, C., Rao, R.S., Pati, B.R., Mondal, K.C. (2009). Tannase production by Bacillus licheniformis KBR6: Optimization of submerged culture conditions by Taguchi DOE methodology. Food Res. Int. 42:430–435.
  • Nainwal, P., Batsa, R. (2012). Quantification of gallic acid in the leaves powder of Drosera indica by using high performance thin layer chromatographic method. Int. J. Chromatogr. Sci. 2:4–7.
  • Pan, C.M., Fan, Y.T., Xing, Y., Hou, H.W., Zhang, M.L. (2008). Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2. Bioresource Technol. 99:3146–3154.
  • Paranthaman, R., Vidyalakshmi, R., Murugesh, S., Singaravadivel, K. (2009). Optimization of various culture media for tannase production in submerged fermentation by Aspergillus flavus. Adv. Biol. Res. 3:34–39.
  • Plackett, R.L., Burman, J.P. (1946). The design of optimum multifactorial experiments. Biometrika, 305–325.
  • Puri, S., Beg, Q.K., Gupta, R. (2002). Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr. Microbiol. 44:286–290.
  • Raaman, N., Mahendran, B., Jaganathan, C., Sukumar, S., Chandrasekaran, V. (2010). Optimisation of extracellular tannase production from Paecilomyces variotii. World J. Microb. Biot. 26:1033–1039.
  • Rana, N.K., Bhat, T.K. (2005). Effect of fermentation system on the production and properties of tannase of Aspergillus niger van Tieghem MTCC 2425. J. Gen. Appl. Microbiol. 51:203–212.
  • Rishad, K.S., Sharrel Rebello., Shabanamol, S., Jisha, M.S. (2016). Optimised production of chitinase from a novel mangrove isolate, Bacillus pumilus MCB-7 using response surface methodology. Biocatal. Agric. Biotechnol. 5:143–149.
  • Rodríguez, H., de las Rivas, B., Gomez, C., Munoz, R. (2008). Degradation of tannic acid by cell-free extracts of Lactobacillus plantarum. Food Chem. 107:664–670.
  • Rodríguez-Durán, L.V., Valdivia-Urdiales, B., Contreras-Esquivel, J.C., Rodraguez-Herrera, R.l., Aguilar, C.B.N. (2011). Novel strategies for upstream and downstream processing of tannin acyl hydrolase. Enzyme Res. 2011:1–20.
  • Sharma, D.C., Satyanarayana, T. (2006). A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged fermentation by using statistical methods. Bioresource Technol. 97:727–733.
  • Sharma, S., Agarwal, L., Saxena, R.K. (2007). Statistical optimization for tannase production from Aspergillus niger under submerged fermentation. Indian J. Microbiol. 47:132–138.
  • Sharma, S., Bhat, T.K., Dawra, R.K. (2000). A spectrophotometric method for assay of tannase using rhodanine. Anal. Biochem. 279:85–89.
  • Singhania, R.R., Sukumaran, R.K., Pandey, A. (2007). Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Appl. Biochem. Biotech. 142:60–70.
  • Tao, S., Beihui, L., Zuohu, L. (1997). Enhanced cellulase production in fed-batch solid state fermentation of Trichoderma viride SL 1. J. Chem. Technol. Biotechnol. 69:429–432.
  • Viswanath, V., Leo, V.V., Sabna Prabha, S., Prabhakumari, C., Potty, V.P., Jisha, M.S. (2015). Biosynthesis of tannase from cashew testa using Aspergillus niger MTCC5889 by solid state fermentation. J. Food Sci. Tech. 52:7433–7440.
  • Viswanath, V., Leo, V.V., Sabna Prabha, S., Prabhakumari, C., Potty, V.P., Jisha, M.S. (2016). Thermal properties of tannin extracted from Anacardium occidentale L. using TGA and FTIR Spectroscopy. Nat. Prod. Res. 30:223–227.
  • Weisberg, S. (2005). Applied linear regression. Hoboken, NJ: John Wiley & Sons.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.