122
Views
4
CrossRef citations to date
0
Altmetric
Articles

The Expression of GroEL Protein Amplified from Bifidobacterium animalis subsp. lactis KLDS 2.0603 and its Role in Competitive Adhesion to Caco-2

, , , , , , & show all

References

  • Barrangou, R., Briczinski, E.P., Traeger, L.L., Loquasto, J.R., Richards, M., Horvath, P., Coûté-Monvoisin, A.C., Leyer, G., Rendulic, S., Steele, J.L., Broadbent, J.R., Oberg, T., Dudley, E.G., Schuster, S., Romero, D.A., Roberts, R.F. (2009). Comparison of the complete genome sequences of Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04. J. Bacteriol. 191:4144–4151.
  • Bergonzelli, G.E., Granato, D., Pridmore, R.D., Marvin-Guy, L.F., Dominique, D., Corthésy-Theulaz, I.E. (2006). GroEL of Lactobacillus johnsonii la1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect. Immun. 74:425–434.
  • Bezkorovainy, A. (2001). Probiotics: determinants of survival and growth in the gut. Am. J. Clin. Nutr. 73:399S–405S.
  • Bianchi, M.A., Del Rio, D., Pellegrini, N., Sansebastiano, G., Neviani, E., Brighenti, F. (2004). A fluorescence-based method for the detection of adhesive properties of lactic acid bacteria to Caco-2 cells. Lett. Appl. Microbiol. 39:301–305.
  • Bulut, Y., Faure, E., Thomas, L., Karahashi, H., Michelsen, K.S., Equils, O., Morrison, S.G., Morrison, R.P., Arditi, M. (2002). Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol. 168:1435–1440.
  • Candela, M., Bergmann, S., Vici, M., Vitali, B., Turroni, S., Eikmanns, B.J., Hammerschmidt, S., Brigidi, P. (2007). Binding of human plasminogen to Bifidobacterium. J. Bacteriol. 189:5929–5936.
  • Candela, M., Centanni, M., Fiori, J., Biagi, E., Turroni, E., Orrico, C., Bergmann, S., Hammerschmidt, S., Brigidi, P. (2010). DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiology. 156: 1609–1618.
  • Candela, M., Perna, F., Carnevali, P., Vitali, B., Ciati, R., Gionchetti, P., Rizzello, F., Campieri, M., Briqidi, P. (2008). Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int. J. Food Microbiol. 125:286–292.
  • Candela, M., Seibold, G., Vitali, B., Lachenmaier, S., Eikmanns, B.J., Brigidi, P. (2005). Real-time PCR quantification of bacterial adhesion to Caco-2 cells: competition between bifidobacteria and enteropathogens. Res. Microbiol. 156:887–895.
  • Candela, M., Biagi, E., Centanni, M., Turroni, S., Vici, M., Musiani, F., Vitali, B., Bergmann, S., Hammerschmidt, S., Brigidi, P. (2009). Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiology. 155:3294–3303.
  • Chow, W.L., Lee, Y.K. (2008). Free fucose is a danger signal to human intestinal epithelial cells. Br. J. Nutr. 99:449–454.
  • Collado, M.C., Gueimonde, M., Hernandez, M., Sanz, Y., Salminen, S. (2005). Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J. Food Prot. 68:2672–2678.
  • Doyle, M.P., Schoeni, J.L. (1984). Survival and growth characteristics of Escherichia coli associated with hemorrhagic colitis. Appl. Environ. Microbiol. 48:855–856.
  • Dunn, B.E., Vakil, N.B., Schneider, B.G., Miller, M.M., Zitzer, J.B., Peutz, T., Phadnis, S.H. (1997). Localization of Helicobacter pylori urease and heat shock protein in human gastric biopsies. Infect. Immun. 65:1181–1188.
  • Engle, M.J., Goetz, G.S., Alpers, D.H. (1998). Caco-2 cells express a combination of colonocyte and enterocyte phenotypes. J. Cell Physiol. 174:362–369.
  • Estrada, A., Wilkie, D.C., Drew, M. (2001). Administration of Bifidobacterium bifidum to chicken broilers reduces the number of carcass condemnations for cellulitis at the abattoir. J. Appl. Poult. Res. 10:329–334.
  • Frisk, A., Ison, C.A., Lagergård, T. (1998). GroEL heat shock protein of Haemophilus ducreyi: association with cell surface and capacity to bind to eukaryotic cells. Infect. Immun. 66:1252–1257.
  • Garduño, R.A., Faulkner, G., Trevors, M.A., Vats, N., Hoffman, P.S. (1998). Immunolocalization of Hsp60 in Legionella pneumophila. J. Bacteriol. 180:505–513.
  • Genovese, F., Coïsson, J.D., Majumder, A., Pessione, A., Svensson, B., Jacobsen, S., Pessione, E. (2013). An exoproteome approach to monitor safety of a cheese-isolated Lactococcus lactis. Food Res. Int. 54:1072–1079.
  • Gillis, T.P., Miller, R.A., Young, D.B., Khanolkar, S.R., Buchanan, T.M. (1985). Immunochemical characterization of a protein associated with Mycobacterium leprae cell wall. Infect. Immun. 49:371–377.
  • Gleinser, M., Grimm, V., Zhurina, D., Yuan, J., Riedel, C.U. (2012). Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA. Microb. Cell Fact. 11:80.
  • González-Rodríguez, I., Sánchez, B., Ruiz, L., Turroni, F., Ventura, M., Ruas-Madiedo, P., Gueimonde, M., Margolles, A. (2012). Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl. Environ. Microbiol. 78:3992–3998.
  • Guglielmetti, S., Tamagnini, I., Mora, D., Minuzzo, M., Scarafoni, A., Arioli, S., Hellman, J., Karp, M., Parini, C. (2008). Implication of an outer surface lipoprotein in adhesion of Bifidobacterium bifidum to Caco-2 cells. Appl. Environ. Microbiol. 74:4695–4702.
  • Gupta, R.S. (1995). Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol. 15:1–11.
  • Guy, C.L. (1990). Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:187–223.
  • Hennequin, C., Porcheray, F., Waligora-Dupriet, A., Collignon, A., Barc, M., Bourlioux, P., Karjalainen, T. (2001a). GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology. 147:87–96.
  • Hennequin, C., Collignon, A., Karjalainen, T. (2001b). Analysis of expression of GroEL (Hsp60) of Clostridium difficile in response to stress. Microb. Pathog. 31:255–260.
  • Junick, J., Blaut, M. (2012). Quantification of human fecal Bifidobacterium species by use of quantitative real-time PCR analysis targeting the groEL Gene. Appl. Environ. Microbiol. 78:2613–2622.
  • Klijn, A., Mercenier, A., Arigoni, F. (2005). Lessons from the genomes of bifidobacteria. FEMS Microbiol. Rev. 29:491–509.
  • Le Blay, G., Fliss, I., Lacroix, C. (2004). Comparative detection of bacterial adhesion to Caco-2 cells with ELISA, radioactivity and plate count methods. J. Microbiol. Meth. 59:211–221.
  • Morita, H., He, F., Fuse, T., Ouwehand, A.C., Hashimoto, H., Hosoda, M., Mizumachi, K., Kurisaki J (2002). Adhesion of lactic acid bacteria to Caco-2 cells and their effect on cytokine secretion. Microbiol. Immunol. 46:293–297.
  • Noah, C.E., Malik, M., Bublitz, D.A.C., Camenares, D., Sellati, T.J., Benach, J.L., Furie1, M.B. (2010). GroEL and lipopolysaccharide from Francisella tularensis live vaccine strain synergistically activate human macrophages. Infect. Immun. 78:1797–1806.
  • O’Connell Motherway, M., Zomer, A., Leahy, S.C., Reunanen, J., Bottacini, F., Claesson, M.J., O’Brien, F., Flynn, K., Casey, P.G., Munoz, J.A., Kearney, B., Houston, A.M., O’Mahony, C., Hiqqins, D.G., Shanahan, F., Palva, A., De Vos, W.M., Fitzqerald, G.F., Ventura, M., O’Toole, P.W., Van Sinderen, D. (2011). Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc. Natl. Acad. Sci. USA. 108:11217–11222.
  • Pérez, P.F., Minnaard, Y., Disalvo, E.A., De Antoni, G.L. (1998). Surface properties of bifidobacterial strains of human origin. Appl. Environ. Microbiol. 64:21–26.
  • Phadnis, S.H., Parlow, M.H., Levy, M., Ilver, D., Caulkins, C.M., Connors, J.B., Dunn, B.E. (1996). Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect. Immun. 64:905–912.
  • Rabsch, W., Andrews, H.L., Kingsley, R.A., Prager, R., Tschäpe, H., Adams, L.G., Bäumle, A.J. (2002). Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect. Immun. 70:2249–2255.
  • Ranford, J.C., Henderson, B. (2002). Chaperonins in disease: mechanisms, models, and treatments. Mol. Pathol. 55:209–213.
  • Servin, A.L., Coconnier, M.H. (2003). Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol. 17:741–754.
  • Török, Z., Goloubinoff, P., Horváth, I., Tsvetkova, N.M., Glatz, A., Balogh, G., Varvasovszki, V., Los, D.A., Vierling, E., Crowe, J.H., Vigh, L. (2001). Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc. Natl. Acad. Sci. USA. 98:3098–3103.
  • Vanet, A., Labigne, A. (1998). Evidence for specific secretion rather than autolysis in the release of some Helicobacter pylori proteins. Infect. Immun. 66:1023–1027.
  • Wang, L.Q., Meng, X.C., Zhang, B.R., Wang, Y., Shang, Y.L. (2010). Influence of cell surface properties on adhesion ability of bifidobacteria. World J. Microbiol. Biotechnol. 26:1999–2007.
  • Wei, X., Yan, X., Chen, X., Yang, Z., Li, H., Zou, D., He, X., Wang, S., Cui, Q., Liu, W., Zhurina, D., Wang, X., Zhao, X., Huang, L., Zeng, M., Ye, Q., Riedel, C.U., Yuan, J. (2014). Proteomic analysis of the interaction of Bifidobacterium longum NCC2705 with the intestine cells Caco-2 and identification of plasminogen receptors. J. Proteomics. 108:89–98.
  • Yildirim, Z., Winters, D.K., Johnson, M.G. (1999). Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454. J. Appl. Microbiol. 86:45–54.
  • Zhu, D., Sun, Y., Liu, F., Li, A., Yang, L., Meng, X.C. (2016). Identification of surface-associated proteins of Bifidobacterium animalis ssp. lactis KLDS 2.0603 by enzymatic shaving. J. Dairy. Sci. 99:1–18.
  • Zhu, H., Lee, C., Zhang, D., Wu, W., Wang, L., Fang, X., Xu, X., Song, D., Xie, J., Ren, S., Gu, J. (2013). Surface-associated GroEL facilitates the adhesion of Escherichia coli to macrophages through lectin-like oxidized low-density lipoprotein receptor-1. Microbes. and Infect. 15:172–180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.