640
Views
31
CrossRef citations to date
0
Altmetric
Original Article

Production of bioactive peptides from tomato seed isolate by Lactobacillus plantarum fermentation and enhancement of antioxidant activity

, , &

References

  • Adigüzel, A.O., Tunçer, M. (2016). Production, characterization and application of a xylanase from Streptomyces sp. AOA40 in fruit juice and bakery industries. Food Biotechnol. 30:189–218.
  • Aguirre, L., Hebert, E.M., Garro, M.S., De Giori, G.S. (2014). Proteolytic activity of Lactobacillus strains on soybean proteins. LWT – Food Sci. Technol. 59:780–785.
  • Agyei, D., Ongkudonb, C.M., Wei, C.Y., Chanc, A.S., Danquahd, M.K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod. Process. 98:244–256.
  • Association of Official Analytical Chemists (AOAC) International. (2000). Official methods of analysis of AOAC (17th ed). Arlington, Virginia: AOAC.
  • Beermann, C., Euler, M., Herzberg, J., Stahl, B. (2009). Anti-oxidative capacity of enzymatically released peptides from soybean protein isolate. Eur. Food Res. Technol. 229:637–644.
  • Capriotti, A.L., Caruso, G., Cavaliere, C., Samperi, R., Ventura, S., Chiozzi, R.Z., Lagana, A. (2015). Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J. Food Composit. Analysis. 44:205–213.
  • Coscueta, E.R., Amorim, M.M., Voss, G.B., Nerli, B.B., Picó, G.A., Pintado, M.E. (2016). Bioactive properties of peptides obtained from Argentinian defatted soy flour protein by Corolase PP hydrolysis. Food Chem. 198:36–44.
  • Dia, V.P., Wang, W., Oh, V.L., Lumen, B.O.D., De Mejia, E.G. (2009). Isolation, purification and characterisation of lunasin from defatted soybean flour and in vitro evaluation of its anti-inflammatory activity. Food Chem. 114:108–115.
  • Elfahri, K.R., Donkor, O.N., Vasiljevic, T. (2014). Potential of novel Lactobacillus helveticus strains and their cell wall bound proteases to release physiologically active peptides from milk proteins. Int. Dairy J. 38:37–46.
  • Esteban-Torres, M., Mancheno, J.M., Rivas, B.D.L., Munoz, R. (2014). Characterization of a halotolerant lipase from the lactic acid bacteria Lactobacillus plantarum useful in food fermentations. LWT – Food Sci. Technol. 60:246–252.
  • Ezekiela, O.O., Ogunsheb, A.A.O., Jegedea, D.E. (2015). Controlled fermentation of cotton seeds (Gossypium hirsutum) for Owoh production using bacteria starter cultures. Nigerian Food J. 33:54–60.
  • Gauthier, S.F., Pouliot, Y., Saint-Sauveur, D. (2006). Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J. 16:1315–1323.
  • Gobbetti, M., Stepaniak, L., De Angelis, M., Corsetti, A., Di Cagno, R. (2002). Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit. Rev. Food Sci. Nutrit. 42:223–239.
  • He, R., Girgih, A.T., Malomo, S.A., Ju, X., Aluko, R.E. (2013). Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. J. Function. Food. 5:219–227.
  • Iskandar, M.M., Lands, L.C., Sabally, K., Azadi, B., Meehan, B., Mawji, N., Skinner, C.D. Kubow, S. (2015). High hydrostatic pressure pretreatment of whey protein isolates improves their digestibility and antioxidant capacity. Foods. 4:184–207.
  • Kachouri, F., Hamdi, M. (2006). Use Lactobacillus plantarum in olive oil process and improvement of phenolic compounds content. J. Food Engineer. 77:746–752.
  • Kachouri, F., Ksontini, H., Kraiem, M., Setti, K., Mechmeche, M., Hamdi, M. (2015). Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds. J. Food Sci. Technol. 52:7924–7933.
  • Kembhavi, A.A., Kulkarni, A., Pant, A. (1993). Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Appl. Biochem. Biotechnol. 38:83–92.
  • Khemariya, P., Singh, S., Jaiswal, N., Chaurasia, S.N.S. (2016). Isolation and identification of Lactobacillus plantarum from vegetable samples. Food Biotechnol. 30:49–62.
  • Korhonen, H. (2009). Milk-derived bioactive peptides: from science to applications. J. Function. Foods. 1:177–187.
  • Korhonen, H., Pihlanto, A. (2003). Food-derived bioactives peptides-opportunities for designing future foods. Current Pharmaceutical Design. 9(16): 1297–308.
  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–685.
  • Latlief, S.I., Knorr, D. (1983). Tomato seed protein concentrates: effects of methods of recovery upon yield and compositional characteristics. J. Food. Sci. 48:1583–1586.
  • Liu, R., Wang, M., Duan, J.A., Guo, J.M., Tang, Y.P. (2010). Purification and identification of three novel antioxidant peptides from Cornu Bubali (water buffalo horn). Peptides. 31:786–793.
  • Majzoobi, M., Sariri ghavi, F., Farahnaky, A., Jamalian, J., Mesbahi, G. (2011). Effect of tomato pomace powder on the physiochemical properties of flat bread (barbari bread). J. Food Process. Preservat. 35:247–256.
  • Mechmeche, M., Kachouri, F., B Yaghlane, H., Ksonini, H., Setti, K., Hamdi, M. (2017a). Kinetic analysis and mathematical modeling of growth parameters of Lactobacillus plantarum in protein-rich isolates from tomato seed. Food Science and Technology International. 23(2):128–141.
  • Mechmeche, M., Kachouri, F., Chouabi, M., Ksonini, H., Setti, K., Hamdi, M. (2017b). Optimization of Extraction Parameters of Protein Isolate from Tomato Seed Using Response Surface Methodology. Food Anal. Methods. 10(3): 809–819.
  • Moayedi, A., Hashemi, M., Safari, M. (2016). Valorization of tomato waste proteins through production of antioxidant and antibacterial hydrolysates by proteolytic Bacillus subtilis: optimization of fermentation conditions. J. Food. Sci. Technol. 53:391–400.
  • Nice, E.C. (1996). Micropreparative HPLC of proteins and peptides: principles and applications. Biopolymers (Peptide Sci.). 40:319–341.
  • Nishino, T., Shibahara-Sone, H., Kikuchi-Hayakawa, H., Ishikawa, F. (2000). Transit of radical scavenging activity of milk products prepared by Maillard reaction and Lactobacillus casei strain Shirota fermentation through the hamster intestine. J. Dairy Sci. 83:915–922.
  • Pihlanto, A. (2006). Antioxidative peptides derived from milk proteins. Int. Dairy J. 16:1306–1314.
  • Qian, B., Xing, M., Cui, L., Deng, Y., Xu, Y., Huang, M., et al. (2011). Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. 625 bulgaricus LB340. J. Dairy Res. 78:72–79.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Bio. Med. 26:1231–1237.
  • Ruiz, G.A., Arts, A., Minor, M., Schutyser, M. (2016). A hybrid dry and aqueous fractionation method to obtain protein-rich fractions from quinoa (Chenopodium quinoa Willd). Food. Bioprocess. Technol. 9:1502–1510.
  • Salampessy, J., Phillips, M., Seneweera, S., Kailasapathy, K. (2010). Release of antimicrobial peptides through bromelain hydrolysis of leatherjacket (Meuschenia sp.) insoluble proteins. Food Chem. 120:556–560.
  • Sarmadi, B.H., Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides. 3:49–56.
  • Savadkoohi, S., Farahnaky, A. (2012). Dynamic rheological and thermal study of the heat-induced gelation of tomato-seed proteins. J. Food Engineer. 113:479–485.
  • Seikova, I., Simeonov, E., Ivanova, E. (2004) Protein leaching from tomato seed – experimental kinetics and prediction of effective diffusivity. J. Food Engineer. 6:165–171.
  • Wang, N., Le, G., Shi, Y., Zeng, Y. (2014). Production of bioactive peptides from soybean meal by solid state fermentation with lactic acid bacteria and protease. Adv. J. Food Sci. Technol. 6:1080–1085.
  • Wang, S., Rao, P., Ye, X. (2009). Isolation and biochemical characterization of a novel leguminous defense peptide with antifungal and antiproliferative potency. Appl. Biochem. Biotechnol. 82:79–86.
  • Wu, W.U., Chen, H.M., Shiau, C.Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36:949–957.
  • Xue, Z., Wen, H., Zhai, L., Yu, Y., Li, Y., Yu, W., Chenga, A., Wang, C., Kou, X. (2015). Antioxidant activity and anti-proliferative effect of a bioactive peptide from chickpea (Cicer arietinum L.). Food Res. Int. 77:75–81.
  • Zhang, Y., Pan, Z., Venkitasamy, C., Ma, H., Li, Y. (2015). Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal. Food Sci. Technol. 62:1154–1161.
  • Zhou, C., Hu, J., Ma, H., Yagoub, A.E., Yu, X., Owusu, J., Ma, H., Qin, X. (2015). Antioxidant peptides from corn gluten meal: orthogonal design evaluation. Food Chem. 187:270–278.
  • Zou, T.B., He, T.P., Li, H.B., Tang, H.W., Xia, E.Q. (2016). The Structure-activity relationship of the antioxidant peptides from natural proteins. Molecules. 21:72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.