457
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Anti-Inflammatory Effects of Lychee (Litchi chinensis Sonn.) Seed Peptide Hydrolysate on RAW 264.7 Macrophage Cells

, , &

References

  • Adeyeye, E. (2011). Comparability of the amino acid composition of aril and seed of Blighia sapida fruit. Afr. J. Food Agric. Nutr. Dev. 11:4810–4827.
  • Awah, F.M., Verla, A.W. (2010). Antioxidant activity, nitric oxide scavenging activity and phenolic contents of Ocimum gratissimum leaf extract. J. Med. Plant Res. 4:2479–2487.
  • Banks, W.A., Kastin, A.J., Gutierrez, E.G. (1994). Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci. Lett. 179:53–56.
  • Boorsma, M., Lutter, R., van de Pol, M., Out, T., Jansen, H.M., Jonkers, R.E. (2008). Long-term effects of budesonide on inflammatory status in COPD. Copd. 5:97–104.
  • Chakrabarti, S., Jahandideh, F., Wu, J. (2014). Food-derived bioactive peptides on inflammation and oxidative stress. Biomed. Res. Int. 2014:608979.
  • Chantaranothai, C., Palaga, T., Karnchanatat, A., Sanvanich, P. (2013). Inhibition of nitric oxide production in the macrophage-like RAW 264.7 cell line by protein from the rhizomes of Zingiberaceae plants. Prep. Biochem. Biotechnol. 43:60–78.
  • Chung, Y.C., Chen, C.H., Tsai, Y.T., Lin, C.C., Chou, J.C., Kao, T.Y., Huang, C.C., Cheng, C.H., Hsu, C.P. (2017). Litchi seed extract inhibits epidermal growth factor receptor signaling and growth of two non-small cell lung carcinoma cells. BMC Complement. Altern. Med. 17:16.
  • Ford, H., Watkins, S., Reblock, K., Rowe, M. (1997). The role of inflammatory cytokines and nitric oxide in the pathogenesis of necrotizing enterocolitis. J. Pediatr. Surg. 32:275–282.
  • Ghosh, S., Karin, M. (2002). Missing pieces in the NF-κB puzzle. Cell. 109:81–96.
  • Gupta, S., Sharma, A.K., Shastri, V., Madhu, M.K., Sharma, V.K. (2017). Prediction of anti-inflammatory proteins/peptides: an insilico approach. J Transl Med. 15:7.
  • Hartmann, R., Meisel, H. (2007). Food-derived peptides with biological activity: from research to food applications. Curr. Opin. Biotechnol. 18:163–169.
  • Hsu, C.P., Lin, C.C., Huang, C.C., Lin, Y.H., Chou, J.C., Tsia, Y.T., Su, J.R., Chung, Y.C. (2012). Induction of apoptosis and cell cycle arrest in human colorectal carcinoma by litchi seed extract. J. Biomed. Biotechnol. 2012:341479.
  • Kim, Y.S., Ahn, C.B., Je, J.Y. (2016). Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW 264.7 macrophage via NF-ĸB and MAPK pathways. Food Chem. 202:9–14.
  • Lee, N., Shin, M.S., Kang, Y., Park, K., Maeda, T., Nishioka, H., Fujii, H., Kang, I. (2016). Oligonol, a lychee fruit-derived low-molecular form of polyphenol mixture, suppresses inflammatory cytokine production from human monocytes. Hum. Immunol. 77:512–515.
  • Lim, G.P., Chu, T., Yang, F., Beech, W., Frautschy, S.A., Cole, G.M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21:8370–8377.
  • Liu, M.C., Yang, S.J., Hong, D., Yang, J.P., Liu, M., Lin, Y., Huang, C.H., Wang, C.J. (2016). A simple and convenient method for the preparation of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Chem. Cent. J. 10:39.
  • Lydyard, P., Whelan, A., Fanger, M. (2004). Instant Notes: immunology. New York, USA: Taylor & Francis. 332pp.
  • McCarthy, A.L., O’Callaghan, Y.C., O’Brien, N.M. (2013). Protein hydrolysates from agricultural crops-bioactivity and potential for functional food development. Agriculture. 3:112–130.
  • Messmer, U.K., Brune, B. (1996). Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochem. J. 319:299–305.
  • Mihara, M., Hashizume, M., Yoshida, H., Suzuki, M., Shiina, M. (2012). IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin. Sci. 122:143–159.
  • Moncada, S., Higgs, A. (1993). The L-arginine-nitric oxide pathway. N. Engl. J. Med. 30:2002–2012.
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65:55–63.
  • Nan, Y.H., Park, K.H., Jeon, Y.J., Park, Y., Park, I.S., Hahm, K.S., Shin, S.Y. (2007). Antimicrobial and anti-inflammatory activities of a Leu/Lys-rich antimicrobial peptide with Phe-peptoid residues. Protein Pept. Lett. 14:1003–1007.
  • Nishishiro, M., Arikawa, S., Wakabayashi, H., Hashimoto, K., Satoh, K., Yokoyama, K., Unten, S., Kakuta, H., Kurihara, T., Motohashi, N., Sakagami, H. (2004). Inhibition of LPS-stimulated NO production in mouse macrophage-like cells by azulenequinones. Anticancer Res. 25:4157–4164.
  • O’Toole, D.K. (1999). Characteristics and use of okara, the soybean residue from soy milk productions - A review. J. Agric. Food Chem. 47:363–371.
  • Pacher, P., Beckman, J.S., Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87:315–424.
  • Phunchaisri, C., Apichartsrangkoon, A. (2005). Effects of ultra-high pressure on biochemical and physical modification of lychee (Litchi chinensis Sonn.). Food Chem. 93:57–64.
  • Qian, Z.J., Je, J.Y., Kim, S.K. (2007). Antihypertensive effect of angiotensin I converting enzyme inhibitory peptide from hydrolysates of bigeye tuna dark muscle. Thunnus Obesus. J. Agric. Food Chem. 55:8398–8403.
  • Rajasekaran, G., Kamalakannan, R., Shin, S.Y. (2015). Enhancement of the anti-inflammatory activity of temporin-1Tl-derived antimicrobial peptides by tryptophan, arginine and lysine substitutions. J. Pept. Sci. 21:779–785.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evan, C. (1999). Antioxidant activityapplying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26:1231–1237.
  • Saikeaw, N., Pridasawas, W., Tia, S., Sudaprasert, K. (2013) Improving a canned lychee production by a life cycle assessment. The 4th International Science, Social Science, Engineering and Energy Conference (I-SEEC 2012) 1:323–331.
  • Saisavoey, T., Sangtanoo, P., Reamtong, O., Karnchanatat, A. (2016). Antioxidant and anti-inflammatory effects of defatted rice bran (Oryza sativa L.) protein hydrolysates on Raw 264.7 macrophage cells. J. Food Biochem. 40:731–740.
  • Skodje, K.M., Kwon, M.Y., Chung, S.W., Kim, E. (2014). Coordination-triggered NO release from a dinitrosyl iron complex leads to anti-inflammatory activity. Chem. Sci. 5:2374.
  • Sun, J., He, H., Xie, B.J. (2004). Novel antioxidant peptides from fermented mushroom Ganoderma Lucidum. J. Agric. Food Chem. 52:6646–6652.
  • Vogel, H.J., Schibli, D.J., Jing, W., Lohmeier-Vogel, E.M., Epand, R.F., Epand, R.M. (2002). Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem. Cell Biol. 80:49–63.
  • Wang, B., Li, L., Chi, C.F., Ma, J.H., Luo, H.Y., Xu, Y.F. (2013). Purification and characterization of novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chem. 138:1713–1719.
  • Wang, X., Hu, X., Yan, H., Ma, Z., Deng, X. (2016). Pro-inflammatory effects of a litchi protein extract in murine RAW 264.7 macrophages. Hortic. Res. 3:16017.
  • Wong, V., Lerner, E. (2015). Nitric oxide inhibition strategies. Future Sci. OA. 1:FSO35.
  • Wu, C., Zhao, W., Zhang, X., Chen, X. (2015). Neocryptotanshinone inhibits lipopolysaccharideinduced inflammation in RAW264.7 macrophages by suppression of NF-κB and iNOS signaling pathways. Acta Pharm. Sin. B. 5:323–329.
  • Yamanishi, R., Yoshigai, E., Okuyama, T., Mori, M., Murase, H., Machida, T., Okumura, T., Nishizawa, M. (2014). The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS ONE. 9:e93818.
  • Yokoyama, K., Hashiba, K., Wakabayashi, H., Hashimoto, K., Satoh, K., Kurihara, T., Motohashi, N., Sakagami, H. (2004). Inhibition of LPS-stimulated NO production in mouse macrophage-like cells by tropolones. Anticancer Res. 24:3917–3922.
  • Zhang, J., Zhang, C. (2015). Research progress on the antineoplastic pharmacological effects and mechanisms of Litchi seeds. Chin. Med. 6:20–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.