356
Views
0
CrossRef citations to date
0
Altmetric
Articles

Improved ethanol tolerance and production of Saccharomyces cerevisiae by global transcription machinery engineering via directed evolution of the SPT8 gene

, , , , , , , , & show all

References

  • Alper, H., J. Moxley, E. Nevoigt, G. R. Fink, and G. Stephanopoulos. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 5085:1565–1568. doi:10.1126/science.1131969.
  • Ansari, S. A., M. Ganapathi, J. J. Benschop, F. C. Holstege, J. T. Wade, and R. H. Morse. 2014. Distinct role of mediator tail module in regulation of saga-dependent, tata-containing genes in yeast. Embo J. 31:44–57. doi:10.1038/emboj.2011.362.
  • Basquin, J., V. V. Roudko, M. Rode, C. Basquin, B. Séraphin, and E. Conti. 2012. Architecture of the nuclease module of the yeast ccr4-not complex: The not1-caf1-ccr4 interaction. Mol. Cell 48:207–218. doi:10.1016/j.molcel.2012.08.014.
  • Belotserkovskaya, R., D. E. Sterner, and M. Deng. 2000. Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters. Mol. Cell Biol. 2:634–647. doi:10.1128/MCB.20.2.634-647.2000.
  • Canzonetta, C., M. Leo, S. R. Guarino, A. Montanari, S. Francisci, and P. Filetici. 2016. Saga complex and gcn5 are necessary for respiration in budding yeast. BBA - Mol. Cell Res. 12:3160–3168.
  • Chambers, A. L., and J. A. Downs. 2007. The contribution of the budding yeast histone H2A C-terminal tail to DNA-damage responses[J]. Biochemical Society Transactions 35 (6):1519–1524.
  • Demeke, M. M., H. Dietz, Y. Li, M. R. Foulquié-Moreno, S. Mutturi, S. Deprez, D. Abt, T. Bonini, B. M. Liden, G. Dumortier, et al. 2013. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol. Biofuels 6:89. doi:10.1186/1754-6834-6-89.
  • Eckertboulet, N., P. S. Nielsen, C. Friis, M. M. Dos, J. Nielsen, and M. C. Kiellandbrandt. 2004. Transcriptional profiling of extracellular amino acid sensing in saccharomyces cerevisiae and the role of stp1p and stp2p. Yeast 8:635–648. doi:10.1002/yea.1120.
  • Gao, C. J., Z. K. Wang, Q. F. Liang, and Q. S. Qi. 2010. Global transcription engineering of brewer’s yeast enhances the fermentation performance under high-gravity conditions. Appl. Microbiol. Biotechnol. 5:1821–1827. doi:10.1007/s00253-010-2648-6.
  • Gao, T., Z. Zheng, Y. Hou, and M. Zhou. 2014. Transcription factors spt3 and spt8 are associated with conidiation, mycelium growth, and pathogenicity in fusarium graminearum. FEMS Microbiol. Lett. 351:42–50. doi:10.1111/1574-6968.12350.
  • Gao, Y., C. Zhang, X. Wang, and T. Zhu. 2017. A test of AMBER force fields in predicting the secondary structure of α-helical and β-hairpin peptides. Chem. Phys. Lett. 679:112–118. doi:10.1016/j.cplett.2017.04.074.
  • Hahn, S. 2004. Structure and mechanism of the rna polymerase ii transcription machinery. Nature Struct. Mol. Biol. 5:394. doi:10.1038/nsmb763.
  • He, W., S. Ye, T. Xue, S. Xu, W. Li, J. Lu, L. Cao, B. Ye, and Y. Chen. 2014. Silencing the glycerol-3-phosphate dehydrogenase gene in Saccharomyces cerevisiae results in more ethanol being producedand less glycerol. Biotechnol. Lett. 36:523–529. doi:10.1007/s10529-013-1375-3.
  • Hou, L., X. Cao, C. Wang, and M. Lu. 2010. Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains. Lett. Appl. Microbiol. 49:14–19. doi:10.1111/j.1472-765X.2009.02615.x.
  • Hu, X. H., M. H. Wang, T. Tan, J. R. Li, H. Yang, L. Leach, R. M. Zhang, and Z. W. Luo. 2007. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175:1479–1487. doi:10.1534/genetics.106.065318.
  • Lee, S. M., T. Jellison, and H. S. Alper. 2012. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast saccharomyces cerevisiae. Appl. Environ. Microbiol. 78:5708–5716. doi:10.1128/AEM.01419-12.
  • Li, F., L. Li, and Y. Zhong. 2012. Relationship between LTR methylation and gag expression of HIV-1 in human spermatozoa and sperm-derived embryos. PLoS One 8:e54801. doi:10.1371/journal.pone.0054801.
  • Li, H., O. Schmitz, and H. S. Alper. 2016. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter. Appl. Microbiol. Biotechnol. 100:10215–10223. doi:10.1007/s00253-016-7879-8.
  • Linda, W., J. A. Ranish, and H. Steven. 2004. Positive and negative functions of the SAGA complex mediated through interaction of Spt8 with TBP and the N-terminal domain of TFIIA. Gene Dev. 9:1022–1034.
  • Liu, H., M. Yan, and C. Lai. 2010. gTME for improved xylose fermentation of Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 2:574. doi:10.1007/s12010-008-8431-9.
  • Manochio, C., B. R. Andrade, R. P. Rodriguez, and B. S. Moraes. 2017. Ethanol from biomass: A comparative overview. Renew Sustain Energy Rev. 80:743–775. doi:10.1016/j.rser.2017.05.063.
  • Mischerikow, N., G. Spedale, and A. F. Altelaar. 2009. In-depth profiling of post-translational modifications on the related transcription factor complexes TFIID and SAGA. J. Proteome Res. 11:5020–5030. doi:10.1021/pr900449e.
  • Mizzen, C. A., X. J. Yang, and T. Kokubo. 1996. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 7:1261–1270. doi:10.1016/S0092-8674(00)81821-8.
  • Ottilie, S., G. M. Goldgof, C. M. Calvet, G. K. Jennings, G. Lamonte, and J. Schenken. 2016. Rapid chagas disease drug target discovery using directed evolution in drug-sensitive yeast. ACS Chem. Biol. 12:422–434.
  • Reese, J. C. 2013. The control of elongation by the yeast ccr4-not complex. BBA-Gene Regul. Mech. 1829:127–133. doi:10.1016/j.bbagrm.2012.09.001.
  • Sadhale, P., J. Verma, and A. Naorem. 2007. Basal transcription machinery: Role in regulation of stress response in eukaryotes. J. Biosciences 3:569–578. doi:10.1007/s12038-007-0056-6.
  • Sanz, A. B., R. García, C. Nombela, and J. Arroyo. 2016. Cooperation between saga and swi/snf complexes is required for efficient transcriptional responses regulated by the yeast mapk slt2. Nucleic Acids Res. 44:7159–7172. doi:10.1093/nar/gkw324.
  • Schütz, M., J. Schöppe, E. Sedlák, M. Hillenbrand, G. Nagydavidescu, and J. Ehrenmann. 2016. Directed evolution of g protein-coupled receptors in yeast for higher functional production in eukaryotic expression hosts. Sci. Rep. 6:21508. doi:10.1038/srep21508.
  • Sermwittayawong, D., and S. Tan. 2014. Saga binds tbp via its spt8 subunit in competition with dna: Implications for tbp recruitment. Embo J. 25:3791–3800. doi:10.1038/sj.emboj.7601265.
  • Sermwittayawong, D., and T. Song. 2006. SAGA binds TBP via its Spt8 subunit in competition with DNA: Implications for TBP recruitment. Embo J. 16:3791–3800. doi:10.1038/sj.emboj.7601265.
  • Shim, B., Z. Ming, and N. R. Shanbhag. 2004. A novel forward-backward predictor based low-power dsp system. IEEE Workshop on Signal Processing Systems.
  • Srivastava, R., K. M. Rai, B. Pandey, S. P. Singh, and S. V. Sawant. 2015. Spt-ada-gcn5-acetyltransferase (saga) complex in plants: Genome wide identification evolutionary conservation and functional determination. PLoS One 8:134–154.
  • Stanley, D., A. Bandara, S. Fraser, P. J. Chambers, and G. A. Stanley. 2010. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J. Appl. Microbiol. 1:13–24.
  • Sterner, D. E., X. Wang, M. H. Bloom, G. M. Simon, and S. L. Berger. 2002. The sant domain of ada2 is required for normal acetylation of histones by the yeast saga complex. J. Biol. Chem. 10:8178–8186. doi:10.1074/jbc.M108601200.
  • Tan, F., B. Wu, L. Dai, H. Qin, Z. Shui, and J. Wang. 2016. Using global transcription machinery engineering (gtme) to improve ethanol tolerance of zymomonas mobilis. Microb. Cell Fact. 1:4. doi:10.1186/s12934-015-0398-y.
  • Wallace, D. F., J. M. Harris, and V. N. Subramaniam. 2010. Functional analysis and theoretical modeling of ferroportin reveals clustering of mutations according to phenotype. Am. J. Physiol. Cell Physiol. 298:75–84. doi:10.1152/ajpcell.00621.2008.
  • Warfield, L., S. Ramachandran, T. Baptista, D. Devys, L. Tora, and S. Hahn. 2017. Transcription of nearly all yeast rna polymerase ii-transcribed genes is dependent on transcription factor. Mol. Cell 68:118. doi:10.1016/j.molcel.2017.08.014.
  • Woods, R. A., and R. D. Gietz. 2001. High-efficiency transformation of plasmid DNA into yeast. Methods Mol. Biol. 177:85–97. doi:10.1385/1-59259-210-4:085.
  • Zabed, H., J. N. Sahu, A. Suely, A. N. Boyce, and G. Faruq. 2017. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew Sustain Energy Rev. 71:475–501. doi:10.1016/j.rser.2016.12.076.
  • Zhao, X., R. Jiang, N. Li, Q. Yang, and F. Bai. 2010. Improving ethanol tolerance of Saccharomyces cerevisiae industrial strain by directed evolution of spt3. Chin. J. Biotechnol. 26:159.
  • Zhi, Q. L., H. S. Zhi, and L. Yong. 2006. Directed evolution and characterization of a novel D-pantonohydrolase from fusarium moniliforme. J. Agric. Food Chem. 16:5823–5830.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.