215
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Low-Cost Closed-Tube Method for Detection of Adulteration in Ground Meat

, , , &

References

  • Ajamma, Y. U., E. Mararo, D. Omondi, T. Onchuru, A. W. Muigai, D. Masiga, and J. Villinger. 2016. Rapid and high throughput molecular identification of diverse mosquito species by high resolution melting analysis. F1000Research 5. doi:10.12688/f1000research.9224.1.
  • Ay, N., and K. Hürkan. 2022. A novel high-resolution melting method for detection of adulteration on Pistachio (Pistacia vera L.). Research Square 1–12. doi:10.21203/rs.3.rs-1637542/v1.
  • Ballin, N. Z., F. K. Vogensen, and A. H. Karlsson. 2009. Species determination - Can we detect and quantify meat adulteration? Meat. Sci. 83 (2):165–174. doi:10.1016/j.meatsci.2009.06.003.
  • Buddhachat, K., P. Changtor, and S. Ninket. 2019. An accurate and rapid method for species identification in plants: Melting fingerprint-high resolution melting (MFin-HRM) analysis. Plant Gene 20:100203. doi:10.1016/j.plgene.2019.100203.
  • Chen, W., X. Chen, J. Xu, J. Cai, and X. Wang. 2022. Identification of dendrobium officinale using DNA barcoding method combined with HRM and qPCR technology. Food Anal. Methods 15 (5):1310–1320. doi:10.1007/s12161-021-02194-y.
  • Chen, C., Y. Ding, Y. Wang, Q. Jiang, F. Wang, C. Lu, L. Zhang, and C. Zhu. 2021. High-resolution melting analysis of COI sequences distinguishes pufferfish species (Takifugu spp.) in China. J. Agric. Food Chem. 69 (2):794–804. doi:10.1021/acs.jafc.0c06584.
  • Chiappini, B., G. Brambilla, U. Agrimi, G. Vaccari, H. J. Aarts, G. Berben, D. Frezza, and V. Giambra. 2005. Real-time polymerase chain reaction approach for quantitation of ruminant-specific DNA to indicate a correlation between DNA amount and meat and bone meal heat treatments. J. AOAC Int. 88 (5):1399–1403. doi:10.1093/jaoac/88.5.1399.
  • Chuah, L. O., X. B. He, M. E. Effarizah, Z. A. Syahariza, A. K. Shamila-Syuhada, and G. Rusul. 2016. Mislabelling of beef and poultry products sold in Malaysia. Food Control 62:157–164. doi:10.1016/j.foodcont.2015.10.030.
  • Combes, M. C., T. Joët, and P. Lashermes. 2018. Development of a rapid and efficient DNA-based method to detect and quantify adulterations in coffee (Arabica versus Robusta). Food Control 88:198–206. doi:10.1016/j.foodcont.2018.01.014.
  • Denyingyhot, A., C. Phraephaisarn, M. Vesaratchavest, W. Dahlan, and S. Keeratipibul. 2021. A new tool for quality control to monitor contamination of six non-halal meats in food industry by multiplex high-resolution melting analysis (HRMA). NFS J. 25:31–40. doi:10.1016/j.nfs.2021.09.002.
  • Desjardins, P., and D. Conklin. 2010. NanoDrop microvolume quantitation of nucleic acids. J. Vis Exp. (45). doi:10.3791/2565.
  • El Sheikha, A. F. 2019. DNAFoil: Novel technology for the rapid detection of food adulteration. Trends in Food Sci. Technol. 86:544–552. doi:10.1016/j.tifs.2018.11.012.
  • El Sheikha, A. F., N. F. K. Mokhtar, C. Amie, D. U. Lamasudin, N. M. Isa, and S. Mustafa. 2017. Authentication technologies using DNA-based approaches for meats and halal meats determination. Food Biotechnol. 31 (4):281–315. doi:10.1080/08905436.2017.1369886.
  • El Sheikha, A. F., and J. Xu. 2018. Molecular techniques and foodstuffs: Innovative fingerprinting, then what?! In Molecular techniques in food biology: Safety, biotechnology, authenticity & traceability, ed. A. F. E. Sheikha, R. E. Levin, and J. Xu, 423–434. Chichester, UK: John Wiley & Sons Ltd.
  • Ewart, K. M., G. J. Frankham, R. McEwing, L. M. Webster, S. A. Ciavaglia, A. M. Linacre, D. T. The, K. Ovouthan, and R. N. Johnson. 2018. An internationally standardized species identification test for use on suspected seized rhinoceros horn in the illegal wildlife trade. Forensic Sci. Int.: Genet. 32:33–39. doi:10.1016/j.fsigen.2017.10.003.
  • Fadzlillah, N. A., Y. B. Che Man, M. A. Jamaludin, A. R. Suhaimi, and H. A. Al-Kahtani. 2011. “Halal food issues from Islamic and modern science perspectives.” 2nd Int. Conf. Humanities, Historical and Social Sciences, Egypt, 21–23 October.
  • Feng, Y., Q. Li, L. Kong, and X. Zheng. 2011. DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. Mol. Biol. Rep. 38 (1):291–299. doi:10.1007/s11033-010-0107-1.
  • Fernandes, T. J., J. Costa, M. B. P. Oliveira, and I. Mafra. 2018. Exploiting 16S rRNA gene for the detection and quantification of fish as a potential allergenic food: A comparison of two real-time PCR approaches. Food Chem. 245:1034–1041. doi:10.1016/j.foodchem.2017.11.068.
  • Foran, D. R., A. B. Fischer, and M. E. Stoloff. 2015. A comparison of mitochondrial DNA amplification strategies for species identification. J. Forensic Investigation 3 (2):7.
  • Ghasemi, Z., M. Hashemi, M. Ejabati, S. M. Ebrahimi, H. K. Manjili, A. Sharafi, and A. Ramazani. 2016. Development of a high-resolution melting analysis method for CYP2C19* 17 genotyping in healthy volunteers. Avicenna J. Med. Biotechnol. 8 (4):193.
  • Gholamnezhad, P., H. Ahari, G. Nikbakht Brujeni, S. A. A. Anvar, and A. Motallebi. 2021. Real-time PCR high-resolution melting analysis for the species identification of meat products: Focusing on food safety and detection of meat adulterations. Thrita 10 (1). doi:10.5812/thrita.112550.
  • Haunshi, S., R. Basumatary, P. S. Girish, S. Doley, R. K. Bardoloi, and A. Kumar. 2009. Identification of chicken, duck, pigeon and pig meat by species-specific markers of mitochondrial origin. Meat. Sci. 83 (3):454–459. doi:10.1016/j.meatsci.2009.06.026.
  • Hellberg, R. S., B. C. Hernandez, and E. L. Hernandez. 2017. Identification of meat and poultry species in food products using DNA barcoding. Food Control 80:23–28. doi:10.1016/j.foodcont.2017.04.025.
  • Hosseni, H. S., F. Tafvizi, M. Tajabadi Ebrahimi, and A. Sharifan. 2014. Fraud identification in beef sausage in Tehran‎ province using mitochondrial genes of animal species. Food Hyg. 4 (1 (13):81–89.
  • Iqbal, M., M. S. Saleem, M. Imran, W. A. Khan, K. Ashraf, M. Yasir Zahoor, I. Rashid, H. U. Rehman, A. Nadeem, S. Ali, et al. 2020. Single tube multiplex PCR assay for the identification of banned meat species. Food Addit Contam Part B Surveill 13 (4):284–291. doi:10.1080/19393210.2020.1778098.
  • Izadpanah, M., N. Mohebali, P. Farzaneh, and F. Vakhshiteh. 2018. Simple and fast multiplex PCR method for detection of species origin in meat products. J. Food Sci. Technol. 55 (2):698–703. doi:10.1007/s13197-017-2980-2.
  • Jancik, S., J. Drabek, J. Berkovcova, Y. Z. Xu, M. Stankova, J. Klein, V. Kolek, J. Skarda, T. Tichy, I. Grygarkova, et al. 2012. A comparison of direct sequencing, Pyrosequencing, high resolution melting analysis, TheraScreen DxS, and the K-ras StripAssay for detecting KRAS mutations in non small cell lung carcinomas. J. Exp. Clin. Cancer Res. 31 (1):1–13. doi:10.1186/1756-9966-31-79.
  • Jeon, H. B., D. Anderson, H. Won, H. Lim, and H. Y. Suk. 2018. Taxonomic characterization of Tanakia species (Acheilognathidae) using DNA barcoding analyses. Mitochondrial DNA Part A 29 (6):964–973. doi:10.1080/24701394.2017.1398746.
  • Khairil Mokhtar, N. F., A. F. El Sheikha, N. I. Azmi, and S. Mustafa. 2020. Potential authentication of various meat-based products using simple and efficient DNA extraction method. J. Sci. Food Agric. 100 (4):1687–1693. doi:10.1002/jsfa.10183.
  • Kim, M. J., and H. Y. Kim. 2019. A fast multiplex real-time PCR assay for simultaneous detection of pork, chicken, and beef in commercial processed meat products. Lwt 114. doi:10.1016/j.lwt.2019.108390.
  • Kitano, T., K. Umetsu, W. Tian, and M. Osawa. 2007. Two universal primer sets for species identification among vertebrates. Int. J. Legal Med. 121 (5):423–427. doi:10.1007/s00414-006-0113-y.
  • Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 (6):1547. doi:10.1093/molbev/msy096.
  • Liu, Y., L. Xiang, Y. Zhang, X. Lai, C. Xiong, J. Li, Y. Su, W. Sun, and S. Chen. 2018. DNA barcoding based identification of Hippophae species and authentication of commercial products by high resolution melting analysis. Food Chem. 242:62–67. doi:10.1016/j.foodchem.2017.09.040.
  • Lopez-Oceja, A., C. Nunez, M. Baeta, D. Gamarra, and M. M. de Pancorbo. 2017. Species identification in meat products: A new screening method based on high resolution melting analysis of cyt b gene. Food Chem. 237:701–706. doi:10.1016/j.foodchem.2017.06.004.
  • Mane, B. G., S. K. Mendiratta, A. K. Tiwari, and K. N. Bhilegaokar. 2012. Development and evaluation of polymerase chain reaction assay for identification of Buffalo meat. Food Anal. Methods 5:296–300. doi:10.1007/s12161-011-9237-x.
  • Mohamad, N. A., A. F. El Sheikha, S. Mustafa, and N. F. K. Mokhtar. 2013. Comparison of gene nature used in real-time PCR for porcine identification and quantification: A review. Food Res. Int. 50 (1):330–338. doi:10.1016/j.foodres.2012.10.047.
  • Mohamad, N. A., S. Mustafa, A. F. El Sheikha, N. F. Khairil Mokhtar, A. Ismail, and M. E. Ali. 2016. Modification of gelatin–DNA interaction for optimised DNA extraction from gelatin and gelatin capsule. J. Sci. Food Agric. 96 (7):2344–2351. doi:10.1002/jsfa.7482.
  • Mohamad, N. A., S. Mustafa, N. F. Khairil Mokhtar, and A. F. El Sheikha. 2018. Molecular beacon-based real-time PCR method for detection of porcine DNA in gelatin and gelatin capsules. J. Sci. Food Agric. 98 (12):4570–4577. doi:10.1002/jsfa.8985.
  • Nehal, N., B. Choudhary, A. Nagpure, and R. K. Gupta. 2021. DNA barcoding: A modern age tool for detection of adulteration in food. Crit Rev. Biotechnol. 41 (5):767–791. doi:10.1080/07388551.2021.1874279.
  • Njaramba, J. K., L. Wambua, T. Mukiama, N. O. Amugune, and J. Villinger. 2021. Detection of species substitution in the meat value chain by high-resolution melting analysis of mitochondrial PCR products. Foods 10 (12):3090. doi:10.3390/foods10123090.
  • Rastogi, G., M. Dharne, A. Bharde, V. S. Pandav, S. V. Ghumatkar, R. Krishnamurthy, M. S. Patole, and Y. S. Shouche. 2004. Species determination and authentication of meat samples by mitochondrial 12S rRNA gene sequence analysis and conformation-sensitive gel electrophoresis. Current Sci. 87 (9): 1278–1281.
  • Riaz, T., W. Shehzad, A. Viari, F. Pompanon, P. Taberlet, and E. Coissac. 2011. ecoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 39 (21):e145–e145. doi:10.1093/nar/gkr732.
  • Sajali, N., S. C. Wong, S. Abu Bakar, N. F. Khairil Mokhtar, Y. N. Manaf, M. H. Yuswan, and M. N. Mohd Desa. 2021. Analytical approaches of meat authentication in food. Int. J. Food Sci. Technol. 56 (4):1535–1543. doi:10.1111/ijfs.14797.
  • Sajali, N., S. C. Wong, U. K. Hanapi, S. Abu Bakar Jamaluddin, N. A. Tasrip, and M. N. Mohd Desa. 2018. The Challenges of DNA extraction in different assorted food matrices: A review. J Food Sci. 83 (10):2409–2414. doi:10.1111/1750-3841.14338.
  • Singh, M., 2020. Improving traceability and detection of food fraud: An exploration of current seafood authentication methods and validation of a novel qPCR and closed-tube barcoding method for commercial species of fish, FASTFISH-ID (Doctoral dissertation, University of Guelph). https://hdl.handle.net/10214/21177
  • Skouridou, V., H. Tomaso, J. Rau, A. S. Bashammakh, M. S. El-Shahawi, A. O. Alyoubi, and C. K. O’Sullivan. 2019. Duplex PCR-ELONA for the detection of pork adulteration in meat products. Food Chem. 287:354–362. doi:10.1016/j.foodchem.2019.02.095.
  • Song, K. Y., H. J. Hwang, and J. H. Kim. 2018. Data for the optimization of conditions for meat species identification using ultra-fast multiplex direct-convection PCR. Data in Brief. 16:15–18. doi:10.1016/j.dib.2017.11.004.
  • Spychaj, A., M. Szalata, R. Slomski, and E. Pospiech. 2016. Identification of bovine, pig and duck meat species in mixtures and in meat products on the basis of the mtDNA cytochrome oxidase subunit I (COI) gene sequence. Polish J. Food Nutr. Sci. 66 (1):31. doi:10.1515/pjfns-2015-0051.
  • Taniguchi, K., T. Akutsu, K. Watanabe, Y. Ogawa, and K. Imaizumi. 2022. A vertebrate-specific qPCR assay as an endogenous internal control for robust species identification. Forensic Sci. Int. Genet. 56:102628. doi:10.1016/j.fsigen.2021.102628.
  • Tisza, Á., Á. Csikós, Á. Simon, G. Gulyás, A. Jávor, and L. Czeglédi. 2016. Identification of poultry species using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and capillary electrophoresis-single strand conformation polymorphism (CE-SSCP) methods. Food Control 59:430–438. doi:10.1016/j.foodcont.2015.06.006.
  • Vences, M., M. Thomas, A. Van der Meijden, Y. Chiari, and D. R. Vieites. 2005. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front. Zool. 2 (1):1–12. doi:10.1186/1742-9994-2-5.
  • Yang, S., C. Li, Q. Wu, C. Zhu, X. Xu, and G. Zhou. 2014. High-resolution melting analysis: A promising molecular method for meat traceability. Eur. Food Res. Technol. 239 (3):473–480. doi:10.1007/s00217-014-2241-9.
  • Ye, J., J. Feng, S. Liu, Y. Zhang, X. Jiang, and Z. Dai. 2016. Identification of four squid species by quantitative real-time polymerase chain reaction. Mol. Cell. Probes 30 (1):22–29. doi:10.1016/j.mcp.2016.01.001.
  • Zeng, Z. C., J. Zhao, C. Q. Chen, G. L. Chen, Z. Zhang, and Y. Y. Wang. 2017. A new species of the genus Gracixalus (Amphibia: Anura: Rhacophoridae) from Mount Jinggang, southeastern China. Zootaxa 4250 (2):171–185. doi:10.11646/zootaxa.4250.2.3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.