165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bioactivity of Pomegranate (Punica granatum L.) Peels Flour to Improve Probiotics Viability in Micro Co-Encapsulation by Ionic Gelation

, , , &

References

  • Abouloifa, H., N. Khodaei, Y. Rokni, S. Karboune, M. Brasca, G. D’Hallewin, R. Ben Salah, E. Saalaoui, and A. Asehraou. 2020. The prebiotics (Fructo-oligosaccharides and xylo-oligosaccharides) modulate the probiotic properties of Lactiplantibacillus and Levilactobacillus strains isolated from traditional fermented olive. World J. Microbiol. Biotech 36 (12):185. doi:10.1007/s11274-020-02961-9.
  • Afzaal, M., F. Saeed, H. Ateeq, A. Imran, I. Yasmin, A. Shahid, A. Javed, Y. A. Shah, F. Islam, C. E. Ofoedu, et al. 2022. Survivability of probiotics under hostile conditions as affected by prebiotic-based encapsulating materials. Int. J. Food Prop. 25 (1):2044–2054. doi:10.1080/10942912.2022.2121836.
  • Akhtar, S., T. Ismail, D. Fraternale, and P. Sestili. 2015. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 174:417–425. doi:10.1016/j.foodchem.2014.11.035.
  • Al-Hindi, R. R., and S. Abd El Ghani. 2020. Production of functional fermented milk beverages supplemented with pomegranate peel extract and probiotic lactic acid bacteria. J. Food. Qual. 2020 (10):1–9. doi:10.1155/2020/4710273.
  • Ali, A., Y. Chen, H. Liu, L. Yu, Z. Baloch, S. Khalid, J. Zhu, and L. Chen. 2019. Starch-based antimicrobial films functionalized by pomegranate peel. Int. J. Biol. Macromol. 129:1120–1126. doi:10.1016/j.ijbiomac.2018.09.068.
  • Álvarez-Martínez, F. J., E. Barrajón-Catalán, J. A. Encinar, J. C. Rodríguez-Díaz, and V. Micol. 2020. Antimicrobial capacity of plant polyphenols against Gram-positive bacteria: A comprehensive review. Curr. Med. Chem. 27 (15):2576–2606. doi:10.2174/0929867325666181008115650.
  • AOAC. 1999. Official method of analysis of AOAC international. 16th ed. Washington, DC: AOAC International.
  • Aqil, F., R. Munagala, M. V. Vadhanam, H. Kausar, J. Jeyabalan, D. J. Schultz, and R. C. Gupta. 2012. Anti-proliferative activity and protection against oxidative DNA damage by punicalagin isolated from pomegranate husk. Food Res. Int. 49 (1):345–253. doi:10.1016/j.foodres.2012.07.059.
  • Balli, D., M. Khatib, L. Cecchi, A. Adessi, P. Melgarejo, C. Nunes, M. A. Coimbra, and N. Mulinacci. 2022. Pomegranate peel as a promising source of pectic polysaccharides: A multi-methodological analytical investigation. Food Chem. 397:133550. doi:10.1016/j.foodchem.2022.133550.
  • Barragán-Martínez, L. P., A. Totosaus, and M. L. Pérez-Chabela. 2020. Probiotication of cooked sausages employing agroindustrial coproducts as prebiotic co-encapsulant in ionotropic alginate–pectin gels. Int. J. Food Sci. Technol. 55 (3):1088–1096. doi:10.1111/ijfs.14259.
  • Bauer, A. W., W. M. M. Kirby, J. C. Sherris, and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45 (4):493–496. doi:10.1093/ajcp/45.4_ts.493.
  • Blaak, E. E., E. E. Canfora, S. Theis, G. Frost, A. K. Groen, G. Mithieux, A. Nauta, K. Scott, B. Stahl, J. van Harsselaar, et al. 2020. Short chain fatty acids in human gut and metabolic health. Benef. Microb. 11 (5):411–455. doi:10.3920/BM2020.0057.
  • Böger, M., S. S. van Leeuwen, A. Lammerts van Bueren, and L. Dijkhuizen. 2019. Structural identity of galactooligosaccharide molecules selectively utilized by single cultures of probiotic bacterial strains. J. Agr. Food Chem. 67 (50):13969–13977. doi:10.1021/acs.jafc.9b05968.
  • Bustamante, P., L. Mayorga, H. Ramírez, P. Martínez, E. Barranco, and A. Azazola. 2006. Evaluación microbiológica de compuestos con actividad prebiótica. Rev. Mex. C. Far. 37 (2):5–10.
  • Çam, M., and N. C. İ̇çyer. 2015. Phenolics of pomegranate peels: Extraction optimization by central composite design and alpha glucosidase inhibition potential. J. Food Sci. Technol. 52 (3):1489–1497. doi:10.1007/s13197-013-1148-y.
  • Campos-Espinoza, F., J. Castaño-Agudelo, and S. Rodriguez-Llamazares. 2022. Polysaccharides systems for probiotic bacteria microencapsulation: Mini review. Food Sci. Technol. 42:e95121. doi:10.1590/fst.95121.
  • Ceppa, F., A. Mancini, and K. Tuohy. 2018. Current evidence linking diet to gut microbiota and brain development and function. Int. J. Food. Sci. Nutr. 70 (1):1–19. doi:10.1080/09637486.2018.1462309.
  • Chan, C.-L., R. Y. Gan, N. P. Shah, and H. Corke. 2018. Enhancing antioxidant capacity of Lactobacillus acidophilus-fermented milk fortified with pomegranate peel extracts. Food Biosci. 26:185–192. doi:10.1016/j.fbio.2018.10.016.
  • Delgado-Ospina, J., R. Lucas-González, M. Viuda-Martos, J. Fernández-López, J. A. Pérez-Álvarez, M. Martuscelli, and C. Chaves-López. 2021. Bioactive compounds and techno-functional properties of high-fiber co-products of the cacao agro-industrial chain. Heliyon 7 (4):e06799. doi:10.1016/j.heliyon.2021.e06799.
  • Der, G., and B. S. Everitt. 2001. A handbook of statistical analyses using SAS. London: Chapman & Hall/CRC.
  • Dubois, M., K. Gilles, J. Hamilton, P. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28 (3):350–356. doi:10.1021/ac60111a017.
  • Fu, X., Z. Liu, C. Zhu, H. Mou, and Q. Kong. 2018. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit. Rev. Food Sci. Nutr. 59 (sup1):s130–s152. doi:10.1080/10408398.2018.1542587.
  • Genskowsky, E., L. A. Puente, J. A. Pérez-Álvarez, J. Fernández-López, L. A. Muñoz, and M. Viuda-Martos. 2016. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J. Sci. Food Agric. 96 (12):4235–3242. doi:10.1002/jsfa.7628.
  • Gibson, G. R., H. M. Probert, J. V. Loo, R. A. Rastall, and M. B. Roberfroid. 2004. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 17 (2):259–275. doi:10.1079/NRR200479.
  • Gibson, G. R., and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125 (6):1401–1412. doi:10.1093/jn/125.6.1401.
  • Gullon, B., M. E. Pintado, J. A. Pérez-Álvarez, and M. Viuda-Martos. 2016. Assessment of polyphenolic profile and antibacterial activity of pomegranate peel (Punica granatum) flour obtained from co-product of juice extraction. Food Control. 59:94–98. doi:10.1016/j.foodcont.2015.05.025.
  • Havsteen, B. H. 2002. The biochemistry and medical significance of the flavonoids. Pharmacol. Therap. 96 (2):67–202. doi:10.1016/S0163-7258(02)00298-X.
  • Hill, C., F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein, B. Pot, L. Morelli, R. B. Canani, H. J. Flint, S. Salminen, et al. 2014. The International scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol Hepatol. 11 (8):506–514. doi:10.1038/nrgastro.2014.66.
  • Homayouni, A., M. R. Ehsani, A. Azizi, M. S. Yarmand, and H. Razavi. 2007. Effect of lecithin and calcium chloride solution on the microencapsulation process yield of calcium alginate beads. Iranian Pol. J. 16 (9):597–606.
  • Hu, D. L., and A. Nakane. 2014. Mechanisms of staphylococcal enterotoxin-induced emesis. Eur. J. Pharmacol. 722:95–107. doi:10.1016/j.ejphar.2013.08.050.
  • Huebner, J., R. L. Wehling, and R. W. Hutkins. 2007. Functional activity of commercial prebiotics. Int. Dairy J. 17 (7):770–775. doi:10.1016/j.idairyj.2006.10.006.
  • Kavas, N., G. Kavas, Ö. Kinik, M. Ateş, M. Kaplan, and G. Şatir. 2021. Symbiotic microencapsulation to enhance Bifidobacterium longum and lactobacillus paracasei survival in goat cheese. Food Sci. Technol. 42:e55620. doi:10.1590/fst.55620.
  • Kok, C. R., D. F. Gomez Quintero, C. Niyirora, D. Rose, A. Li, and R. Hutkins. 2019. An in vitro strategy for formulating synergistic synbiotics. App. Environ. Microbiol. 85 (16):e01073–19. doi:10.1128/AEM.01073-19.
  • Krumbeck, J. A., J. Walter, and R. W. Hutkins. 2018. Synbiotics for improved human health: Recent developments, challenges, and opportunities. An. Rev. Food Sci. Technol. 25 (9):451–479. doi:10.1146/annurev-food-030117-012757.
  • Kushwaha, S. C., M. B. Bera, and P. Kumar. 2013. Nutritional composition of detanninated and fresh pomegranate peel powder. IOSR J. Environ. Sci. Tox. Food Technol. 7 (1):38–42. doi:10.9790/2402-0713842.
  • Li, H., T. Zhang, C. Li, S. Zheng, H. Li, and J. Yu. 2020. Development of a microencapsulated synbiotic product and its application in yoghurt. LWT-Food Sci. Technol. 122:109033. doi:10.1016/j.lwt.2020.109033.
  • Lima, M. C., C. Paiva de Sousa, C. Fernandez-Prada, J. Harel, and E. L. de Souza. 2019. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb. Pathog. 130:259–270. doi:10.1016/j.micpath.2019.03.025.
  • Mansour, E., A. Ben Khaled, B. Lachiheb, M. Abid, K. Bachar, and A. Ferchichi. 2013. Phenolic compounds, antioxidant, and antibacterial activities of peel extract from Tunisian pomegranate. J. Agr. Sci. Technol. 15 (7):1393–1403.
  • Martinez, R. C., R. Bedani, and S. M. Saad. 2015. Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: An update for current perspectives and future challenges. Brit. J. Nutr. 114 (12):1993–2015. doi:10.1017/S0007114515003864.
  • Naqash, F., F. A. Masoodi, S. A. Rather, S. M. Wani, and A. Gani. 2017. Emerging concepts in the nutraceutical and functional properties of pectin – a review. Carbohyd. Polym. 168:227–239. doi:10.1016/j.carbpol.2017.03.058.
  • O’Flaherty, S., N. Cobian, and R. Barrangou. 2023. Impact of pomegranate on probiotic growth, viability, transcriptome and metabolism. Microorganisms 11 (2):404. doi:10.3390/microorganisms11020404.
  • Ozcan, T., and E. Eroglu. 2022. Effect of stevia and inulin interactions on fermentation profile and short-chain fatty acid production of Lactobacillus acidophilus in milk and in vitro systems. Int. J. Dairy Technol. 75 (1):171–181. doi:10.1111/1471-0307.12814.
  • Pérez-Chabela, M. L., and A. M. Hernández-Alcántara. 2018. Agroindustrial coproducts as sources of novel functional ingredients. In Food processing for increased quality and consumption, ed., A. M. Grumezescu and A. M. Holban. London: Academic Press. doi:10.1016/B978-0-12-811447-6.00008-4.
  • Polat Yemis, G., S. Bach, and P. Delaquis. 2019. Antibacterial activity of polyphenol-rich pomegranate peel extract against Cronobacter sakazakii. Int. J. Food Prop. 22 (1):985–993. doi:10.1080/10942912.2019.1622564.
  • Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decoloration assay. Free Rad. Biol. Med. 26 (9–10):1231–1237. doi:10.1016/S0891-5849(98)00315-3.
  • Rivas, M. Á., M. J. Benito, S. Ruíz-Moyano, A. Martín, M. G. Córdoba, A. V. Merchán, and R. Casquete. 2021. Improving the viability and metabolism of intestinal probiotic bacteria using fibre obtained from vegetable by-products. Foods 10 (9):2113. doi:10.3390/foods10092113.
  • Saccaro, D. M., A. Y. Tamime, A. L. O. P. S. Pilleggi, and M. N. Oliveira. 2009. The viability of three probiotic organisms grown with yoghurt starter cultures during storage for 21 days at 4 °C. Int. J. Dairy Technol. 62 (3):397–404. doi:10.1111/j.1471-0307.2009.00497.x.
  • Shakhmatov, E. G., E. N. Makarova, and V. A. Belyy. 2019. Structural studies of biologically active pectin-containing polysaccharides of pomegranate Punica granatum. Int. J. Biol. Macromol. 122:29–36. doi:10.1016/j.ijbiomac.2018.10.146.
  • Shakhmatov, E. G., P. V. Toukach, and E. N. Makarova. 2020. Structural studies of the pectic polysaccharide from fruits of Punica granatum. Carbohyd. Polym. 235:115978. doi:10.1016/j.carbpol.2020.115978.
  • Singh, B., J. P. Singh, A. Kaur, and N. Singh. 2018. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 261:75–86. doi:10.1016/j.foodchem.2018.04.039.
  • Singh, R. P., S. Prakash, R. Bhatia, M. Negi, J. Singh, M. Bishnoi, and K. K. Kondepudi. 2020. Generation of structurally diverse pectin oligosaccharides having prebiotic attributes. Food Hydrocollod. 108:105988. doi:10.1016/j.foodhyd.2020.105988.
  • Singlenton, V., and J. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Vit. Enol. 16 (3):144–158. doi:10.5344/ajev.1965.16.3.144.
  • Sulieman, A. M. E., W. A. Babiker, S. B. Elhardallou, E. A. Elkhalifa, and V. N. Veettil. 2016. Influence of enrichment of wheat bread with pomegranate (Punica granatum L) peels by-products. Int. J. Food Sci. Nutr. Eng. 6 (1):9–13.
  • Sun, Y., and M. X. D. O‘riordan. 2013. Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Adv. App. Microbiol. 85:93–118. doi:10.1016/B978-0-12-407672-3.00003-4.
  • Viuda-Martos, M., E. Sánchez Zapata, A. Martin Sánchez, Y. Ruiz Navajas, J. Fernández López, E. Sendra, E. Sayas Barbera, C. Navarro, and J. A. Pérezálvarez. 2012. Technological properties of pomegranate peel extract obtained as coproduct of juice processing. In Dietary fiber and health, ed. S. Cho and N. Almeida, 443–452. Boca Raton: CRC Press.
  • Willey, J., I. M. Sherwood, and C. J. Woolverton. 2008. Microbiología de Prescott, Harley and Klein. Madrid: Mc Graw Hill.
  • Wu, D., X. Ma, and W. Tian. 2013. Pomegranate husk extract, punicalagin and ellagic acid inhibit fatty acid synthase and adipogenesis of 3T3-L1 adipocyte. J. Funct. Foods 5 (2):633–641. doi:10.1016/j.jff.2013.01.005.
  • Yáñez-Fernández, J., E. Ramos-Ramírez, and J. Salazar-Montoya. 2007. Rheological characterization of dispersions and emulsions used in the preparation of microcapsules obtained by interfacial polymerization containing Lactobacillus sp. Eur. Food Res. Technol. 226 (5):957–966. doi:10.1007/s00217-007-0617-9.
  • Yeung, T. W., I. J. Arroyo-Mata, D. J. McClements, and D. A. Sela. 2016. Microencapsulation of probiotics in hydrogel particles: Enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads. Food Funct. 7 (4):1797–1804. doi:10.1039/c6fo90021f.
  • Zuñiga, M., M. J. Yebra, and V. Monedero. 2021. Complex oligosaccharide utilization pathways in Lactobacillus. Curr. Issues Mol. Biol. 40:49–80. doi:10.21775/cimb.040.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.