24
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rerouting the Metabolic Pathway in Lactococcus lactis ATCC 11454 to Improve Nisin Productivity by Disrupting Lactate Dehydrogenase (ldh)

, , , , , & show all

References

  • Aarnikunnas, J., N. Von Weymarn, K. Rönnholm, M. Leisola, and A. Palva. 2003. Metabolic engineering of lactobacillus fermentum for production of mannitol and pure L-lactic acid or pyruvate. Biotechnol. Bioeng. 82 (6):653–663. doi:10.1002/bit.10615.
  • Arauz, L. J. D., A. F. Jozala, G. S. Pinheiro, P. G. Mazzola, A. P. Júnior, and T. C. V. Penna. 2008. Nisin expression production from Lactococcus lactis in milk whey medium. J. Chem. Technol. Biotechnol. 83 (3):325–328. doi:10.1002/jctb.1813.
  • Bosma, E. F., J. Forster, and A. T. Nielsen. 2017. Lactobacilli and pediococci as versatile cell factories – evaluation of strain properties and genetic tools. Biotechnol. Adv. 35 (4):419. doi:10.1016/j.biotechadv.2017.04.002.
  • Chang, A. Y., V. Chau, J. A. Landas, and Y. Pang. 2017. Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI Methods 1:22–25.
  • Cheigh, C. I., H. J. Choi, H. Park, S. B. Kim, M. C. Kook, T. S. Kim, J. K. Hwang, and Y. R. Pyun. 2002. Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J. Biotechnol. 95 (3):225–235. doi:10.1016/S0168-1656(02)00010-X.
  • Chikindas, M. L., R. Weeks, D. Drider, V. A. Chistyakov, and L. M. Dicks. 2018. Functions and emerging applications of bacteriocins. Curr. Opin. Biotechnol. 49:23–28. doi:10.1016/j.copbio.2017.07.011.
  • Delesa, D. A. 2017. Bacteriocin as an advanced technology in food industry. Int. J. Adv. Res. Biol. Sci. 4 (12):178–190. doi:10.22192/ijarbs.2017.04.12.018.
  • Dussault, D., K. D. Vu, and M. Lacroix. 2016. Enhancement of nisin production by Lactococcus lactis subsp. lactis. Probiotics Antimicrob. Proteins 8 (3):170–175. doi:10.1007/s12602-016-9216-z.
  • Fact.MR 2024 February. Natural food preservatives market outlook; 2023 to 2033. https://www.factmr.com/report/3056/natural-food-preservatives-market.
  • Field, D., P. D. Cotter, R. P. Ross, and C. Hill. 2015. Bioengineering of the model lantibiotic nisin. Bioeng. 6 (4):187–192. doi:10.1080/21655979.2015.1049781.
  • Gaspar, P., A. L. Carvalho, S. Vinga, H. Santos, and A. R. Neves. 2013. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol. Adv. 31 (6):764–788. doi:10.1016/j.biotechadv.2013.03.011.
  • Gaspar, P., A. R. Neves, M. J. Gasson, C. A. Shearman, and H. Santos. 2011. High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD + cofactor recycling. Appl. Environ. Microbiol. 77 (19):6826–6835. doi:10.1128/AEM.05544-11.
  • Guerra, N. P., M. L. Rua, and L. Pastrana. 2001. Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. Int. J. Food Microbiol. 70 (3):267–281. doi:10.1016/S0168-1605(01)00551-7.
  • Hasan, H., M. H. Abd Rahim, L. Campbell, D. Carter, A. Abbas, and A. Montoya. 2018. Overexpression of acetyl-CoA carboxylase in Aspergillus terreus to increase lovastatin production. N. Biotechnol 44:64–71. doi:10.1016/j.nbt.2018.04.008.
  • Hasan, H., M. H. Abd Rahim, L. Campbell, D. Carter, A. Abbas, and A. Montoya. 2019. Improved lovastatin production by inhibiting (+)-geodin biosynthesis in Aspergillus terreus. N. Biotechnol 52:19–24. doi:10.1016/j.nbt.2019.04.003.
  • Hoefnagel, M. H. N., M. J. C. Starrenburg, D. E. Martens, J. Hugenholtz, M. Kleerebezem, I. I. Van Swam, R. Bongers, H. V. Westerhoff, and J. L. Snoep. 2002. Metabolic engineering of lactic acid bacteria, the combined approach: Kinetic modelling, metabolic control and experimental analysis. Microbiol. 148 (4):1003–1013. doi:10.1099/00221287-148-4-1003.
  • Karakas-Sen, A., and E. Karakas. 2018. Isolation, identification and technological properties of lactic acid bacteria from raw cow milk. Biosci. J. 34 (2):385–399. doi:10.14393/BJ-v34n2a2018-34517.
  • Khelissa, S., N. E. Chihib, and A. Gharsallaoui. 2021. Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative. Arch. Microbiol. 203 (2):465–480. doi:10.1007/s00203-020-02054-z.
  • Mohd Rasid, N. H., N. Abdul Halid, A. A. L. Song, S. Sabri, N. Saari, and H. Hasan. 2022. Effects of individual and combined fermentation factors on antimicrobial activity of nisin by Lactococcus lactis ATCC 11454. Mol. Biotechnol. 65 (6):861–870. doi:10.1007/s12033-022-00584-z.
  • Mustafa, S. M., L. S. Chua, and H. A. El-Enshasy. 2019. Effects of agitation speed and kinetic studies on probiotication of pomegranate juice with Lactobacillus casei. Mol. 24 (13):2357. doi:10.3390/molecules24132357.
  • Neves, A. R., W. A. Pool, J. Kok, O. P. Kuipers, and H. Santos. 2005. Overview on sugar metabolism and its control in Lactococcus lactis — the input from in vivo NMR. FEMS Microbiol. Rev. 29 (3):531–554. doi:10.1016/j.fmrre.2005.04.005.
  • Nissen, L., G. Pérez-Martínez, and M. J. Yebra. 2005. Sorbitol synthesis by an engineered lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon. FEMS Microbiol. Lett. 249 (1):177–183. doi:10.1016/j.femsle.2005.06.010.
  • Özel, B., Ş. Ömer, M. Akçelik, and P. E. J. Saris. 2018. Innovative approaches to nisin production. Appl. Microbiol. Biotechnol. 102 (15):6299–6307. doi:10.1007/s00253-018-9098-y.
  • Papagianni, M. 2012. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput. Struct. Biotechnol. J. 3 (4):e201210003. doi:10.5936/csbj.201210003.
  • Penna, T. C. V., A. F. Jozala, L. C. De Lencastre Novaes, A. Pessoa, and O. Cholewa. 2005. Production of nisin by Lactococcus lactis in media with Skimmed Milk. ABAB 122:0619–0638. doi:10.1385/ABAB:122:1-3:0619. 1–3
  • Rezvani, F., F. Ardestani, and G. Najafpour. 2017. Growth kinetic models of five species of Lactobacilli and lactose consumption in batch submerged culture. Braz. J. Microbiol. 48 (2):251–258. doi:10.1016/j.bjm.2016.12.007.
  • Roncal, T., S. Caballero, M. D. M. Díaz de Guereñu, I. Rincón, S. Prieto-Fernández, and J. R. Ochoa-Gómez. 2017. Efficient production of acetoin by fermentation using the newly isolated mutant strain Lactococcus lactis subsp. lactis CML B4. Process Biochem. 58:35–41. doi:10.1016/j.procbio.2017.04.007.
  • Sadiq, S., M. Imran, M. N. Hassan, M. Iqbal, Y. Zafar, and F. Y. Hafeez. 2014. Potential of bacteriocinogenic Lactococcus lactis subsp. lactis inhabiting low pH vegetables to produce nisin variants. LWT – Food Sci. Technol. 59 (1):204–210. doi:10.1016/j.lwt.2014.05.018.
  • Salman, M., M. Shahid, T. Sahar, S. Naheed, M. Arif, M. Iqbal, and A. Nazir. 2020. Development of regression model for bacteriocin production from local isolate of Lactobacillus acidophilus MS1 using box-behnken design. Biocatal. Agric. Biotechnol. 24:101542. doi:10.1016/j.bcab.2020.101542.
  • Singh, S., K. N. Singh, S. Mandjiny, and L. Holmes. 2015. Modeling the growth of Lactococcus lactis NCIM 2114 under differently aerated and agitated conditions in broth medium. Ferment. 1 (1):86–97. doi:10.3390/fermentation1010086.
  • Suganthi, V., E. Selvarajan, C. Subathra Devi, and V. Mohanasrinivasan. 2012. Lantibiotic nisin: Natural preservative from Lactococcus lactis. Int. Res. J. Pharm. 3 (1):13–19.
  • Viana, R., M. J. Yebra, J. L. Galán, V. Monedero, and G. Pérez-Martínez. 2005. Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei. Res. Microbiol. 156 (5–6):641–649. doi:10.1016/j.resmic.2005.02.011.
  • Zacharof, M. P., and R. W. Lovitt. 2012. Bacteriocins produced by lactic acid bacteria - a review. Procedia. APCBEE 2:50–56. doi:10.1016/j.apcbee.2012.06.010.
  • Zhang, J., Q. Caiyin, W. Feng, X. Zhao, B. Qiao, G. Zhao, and J. Qiao. 2016. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44. Sci. Rep. 6 (1):1–12. doi:10.1038/srep27973.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.