464
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of a Six-Stage Culture System for Simulating the Gastrointestinal Microbiota of Weaned Infants

Pages 111-123 | Published online: 11 Jul 2009

References

  • Falk PG, Hooper LV, Midtvedt T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 1998; 62 (4): 1157–70.
  • Cooperstock MS, Zedd AJ. Intestinal flora of infants. In: Hentges DJ, ed. Human Intestinal Flora in Health and Dis-ease. New York: Academic Press, 1983: 79–99.
  • Stark PL, Lee A. Microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life. J. Med. Microbiol. 1982; 15: 189–203.
  • Balmer SE, Wharton BA. Diet and faecal flora in the new-born: iron. Arch. Dis. Child. 1991; 66 (12): 1390–4.
  • Bullen CL, Tearle PV, Stewart MG. The effect of humanised milks and supplemented breast feeding on the faecal flora of infants. J. Med. Microbiol. 1977; 9: 325–33.
  • Conway P. Development of intestinal microbiota. In: Mackie RI, White BA, Isaacson RE, eds. Gastrointestinal Microbiol-ogy. New York: Chapman & Hall, 1997: 3–38.
  • Simon G, Gorbach SL. Normal alimentary tract microflora. In: Blaser MJ, Smith PD, Ravdin JI, Greenberg HB, Guer-rant RL, eds. Infections of the Gastrointestinal Tract. New York: Raven Press, 1995: 53–69.
  • Holzapfel WH, Haberer P, Snel J, Schillinger U, Huis in't Veld JHJ. Overview of gut flora and probiotics. Int. J. Food Microbiol. 1998; 41: 85–101.
  • Roediger WE, Moore J, Babidge W. Colonic sulfide in patho-genesis and treatment of ulcerative colitis. Digest. Dis. Sci. 1997; 42 (8): 1571–9.
  • Bartram HP, Kasper K, Dusel G, Liebscher E, Gostner A, Loges C, et al. Effects of calcium and deoxycholic acid on human colonic cell proliferation in vitro. Ann. Nutr. Metabol. 1997; 41: 315–25.
  • Macfarlane GT, Macfarlane S. Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bac-teria. Scand. J. Gastroenterol. 1997; 32 (suppl. 222): 3–9.
  • Rumney CJ, Rowland IR. In vivo and in vitro models of the human colonic flora. Crit. Rev. Food Sci. Nutr. 1992; 31(4): 299–331.
  • Macfarlane S, Quigley ME, Hopkins MJ, Newton DF, Mac-farlane GT. Polysaccharide degradation by human intestinal bacteria during growth under multi-substrate limiting condi-tions in a three-stage continuous culture system. FEMS Mi-crobiol. Ecol. 1998; 26: 231–43.
  • Macfarlane GT, Macfarlane S, Gibson GR. Validation of a three-stage compound continuous culture system for investi-gating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb. Ecol. 1998; 35: 180–7.
  • Macfarlane GT, Cummings JH, Macfarlane S, Gibson GR. Influence of retention time on degradation of pancreatic enzymes by human colonic bacteria grown in a 3-stage contin-uous culture system. J. Appl. Bacteriol. 1989; 67 (5): 520–7.
  • Macfarlane GT, Hay S, Gibson GR. Influence of mucin on glycosidase, protease and arylamidase activities of human gut bacteria grown in a 3-stage continuous culture system. J. Appl. Bacteriol. 1989; 66 (5): 407–17.
  • Minekus M, Smeets-Peeters M, Bernalier A, Marol-Bonnin S, Havenaar R, Marteau P, et al. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microbiol. Biotechnol. 1999; 53: 108–14.
  • Parrett AM, Edwards CA. In vitro fermentation of carbohy-drate by breast fed and formula fed infants. Arch. Dis. Child. 1997; 76: 249–53.
  • Lifschitz CH, Wolin MJ, Reed J. Characterisation of carbo-hydrate fermentation in faeces of formula fed and breast fed infants. Pediatr. Res. 1990; 27: 163–9.
  • Rasmussen HS, Holtug K, Ynggärd K, Mortensen PB. Faecal concentrations and production rates of short chain fatty acids in normal neonates. Acta Pediatr. Scand. 1988; 77: 365–8.
  • Garland JL, Mills AL. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. En-viron. Microbiol. 1991; 57: 2351–9.
  • Glimm E, Heuer H, Engelen B, Smalla K, Backhaus H. Statistical comparisons of community catabolic profiles. J. Microbiol. Methods 1997; 30: 71–80.
  • Verschuere L, Dhont J, Sorgeloos P, Verstraete W. Monitor-ing Biolog patterns and r/K strategists in the intensive culture of Artemiai juveniles. J. Appl. Microbiol. 1997; 83: 603–12.
  • Hueur H, Smalla K. Evaluation of community-level catabolic profiling using BIOLOG GN microplates to study microbial community changes in potato phyllosphere. J. Microbiol. Methods 1997; 30: 49–61.
  • Boon N, Marie C, Top E, Verstraete W. Comparison of the spatial homogeneity of physico-chemical parameters and bac-terial 16S rRNA genes in sediment samples of a dumping site of dredging sludge. Appl. Microbiol. Biotechnol. 2000; 53: 742–7.
  • El Fantroussi S, Verschuere L, Verstraete W, Top EM. Effect of phenylurea herbicides on soil microbial communities esti-mated by analysis of 16S rRNA gene fingerprints and com-munity-level physiological profiles. Appl. Environ. Microbiol. 1999; 65: 982–8.
  • Ovreas L, Forney L, Daae FL, Torsvik V. Distribution of bacterioplankton in meromictic lake Saelevannet, as deter-mined by denaturing gradient gel electrophoresis of PCR-am-plified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 1997; 63: 3367–73.
  • Muyzer G, de Waal EC, Uitterlinden A. Pofiling of complex microbial populations using denaturing gradient gel elec-trophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Microbiol. Biotechnol. 1993; 59: 695–700.
  • Muyzer G, Hottenträger S, Teske A, Wawer C. Denaturing gradient gel electrophoresis of PCR amplified 16S rDNA-a new molecular approach to analyse the genetic diversity of mixed microbial communities. Mol. Microb. Ecol. Manual 1996; 3: 1–23.
  • Norin KE, Carlstedt-Duke B, Höverstad D, Lingaas E, Sax-erholt H, Steinbakk M, et al. Faecal tryptic activity in hu-mans: influence of antibiotics on microbial intestinal degradation. Microb. Ecol. Health Dis. 1988; 1: 65–8.
  • Nollet L, Demeyer D, Verstraete W. Effect of 2-bromoethane-sulfonic acid and Peptostreptoccus productus ATCC 35244 addition on stimuation of reductive acetogenesis in the rumi-nal ecosystem by selective inhibition of methanogenesis. Appl. Environ. Microbiol. 1997; 63 (1): 194–200.
  • Bremner JM, Keeney RD. Steam distillation methods for determination of ammonium, nitrate and glycine. Anal. Chem. Acta 1965; 32: 485–95.
  • Molly K, Vande Woestyne M, De Smet I, Verstraete W. Validation of the simulator of the human intestinal microbial ecosystem (SHIME) reactor using microorganism-associated activities. Microb. Ecol. Health Dis. 1994; 7: 191–200.
  • Molly K, Vande Woestyne M, Verstraete W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 1993; 39 (2): 254–8.
  • Macfarlane GT, Gibson GR, Cummings JH. Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol. 1992; 72 (1): 57–64.
  • Guérin-Danan C, Popot AF, Vaissade ACP, Gaudichon C, Pedone C, Bouley C, et al. Pattern of metabolism and compo-sition of the faecal microflora in infants 10 to 18 months old from day care centers. J. Pediatr. Gastroenterol. Nutr. 1997; 25: 281–9.
  • Weaver LT, Steiner H. The bowel habit of young children. Arch. Dis. Child. 1984; 59: 649–52.
  • Walker AR, Walker BF. Bowel behaviour in young black and white children. Arch. Dis. Child. 1985; 60: 967–70.
  • McClure RJ, Newell SJ. Randomised controlled trial of trophic feeding and gut motility. Arch. Dis. Child. Fetal Neonat. Edition 1999; 80: F54–8.
  • Gibson GR, Cummings JH, Macfarlane GT. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl. Environ. Microbiol. 1988; 54 (11): 2750–5.
  • Cummings JH, Macfarlane GT. The control and conse-quences of bacterial fermentation in the human colon. J. Appl. Microbiol. 1991; 70: 443–59.
  • Vonk RJ, Kalivianakis M, Minich DM, Bijleveld CMA, Verkade HJ. The metabolic importance of unabsorbed dietary lipids in the colon. Scand. J. Gastroenterol. 1997; 32 (suppl. 2): 65–7.
  • Silvester KR, Cummings JH. Does digestibility of meat protein help explain large bowel cancer risk. Nutr. Cancer 1995; 24: 279–88.
  • Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 1999; 69: 1035S–45S.
  • Shimamura S, Abe F, Ishibashi N, Miyakawa H, Yaeshiwa T, Araya T, et al. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium sp. Journal Dairy Sci. 1992; 75 (12): 3296–306.
  • Zoetendal EG, Akkermans ADL, De Vos WM. Temperature gradient gel electrophoresis analysis of 16S rRNA from hu-man fecal samples reveals stable and host-specific communi-ties of active bacteria. Appl. Environ. Microbiol. 1998; 64 (10): 3854–9.
  • Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM, Munro K, et al. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gra-dient gel electrophoresis and species-specific PCR primers. Appl. Environ. Microbiol. 2000; 66 (1): 297–303.
  • Smalla K, Wachtendorf U, Heuer H, Liu W-T, Forney L. Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl. Environ. Microbiol. 1998; 64 (4): 1220–5.
  • Simpson JM, McCracken V.T, White BA, Gaskins HR, Mackie RI. Application of denaturing gradient gel elec-trophoresis for the analysis of the porcine gastrointestinal microbiota. J. Microbiol. Methods 1999; 36: 167–79.
  • Heavey PM, Rowland IR. The gut microflora of the develop-ing infant: microbiology and metabolism. Scand. J. Gastroen-terol. 1999; 11: 75–83.
  • Midtvedt AC, Midtvedt T. Production of short chain fatty acids by the intestinal microflora during the first 2 years of human life. J. Pediatr. Gastroenterol. Nutr. 1992; 15: 395–403.
  • Miller TL, Wolin MJ. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl. Environ. Microbiol. 1992; 62 (5): 1589–92.
  • Siigur U, NorM KE, Allgoods G, Schlagheck T, Midtvedt T. Concentrations and correlations of faecal short-chain fatty acids and faecal water content in man. Microb. Ecol. Health Dis. 1994; 7: 287–94.
  • Nollet L, Verstraete W. Gastro-enteric methane versus sul-phate and volatile fatty acid production. Environ. Monit. Asses. 1996; 42: 117–36.
  • Demeyer D, Piattoni F, Mbanzamihigo L, Immig I, Nollet L. Alternative hydrogen sink pathways in hindgut fermentation. Reprod. Nutr. Dev. 1997 (suppl. 1): 67–8.
  • Piveteau P. Metabolism of lactate and sugars by dairy propi-onibacteria: a review. Lait 1999; 79 (1): 23–41.
  • Rogosa M. Section 8 Anaerobic Gram negative cocci. In: Krieg NR, Holt JG, eds. Bergey's Manual of Systematic Bacteriology. Baltimore: Williams & Wilkins, 1984: 680–5.
  • Hino T, Shimada K, Maruyama T. Substrate preference in a strain of Megaspaera elsdenii, a ruminal bacterium, and its implication in propionate production and growth competi-tion. Appl. Environ. Microbiol. 1994; 60 (6): 1827–31.
  • Janssen PH. Isolation of Clostridium prop ionicum strain 19acry3 and further characteristics of the species. Arch. Mi-crobiol. 1991; 155: 566–71.