223
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The Presence of a Cytochrome P450-like Protein in the Human Intestinal Microflora Eubacterium aerofaciens

, , , , &
Pages 3-8 | Published online: 11 Jul 2009

References

  • McDanell RE, McLean AEM, Hanley AB, Heaney RK, Fenwick GR. Chemical and biological properties of indole glucosinolates (glucobrassicins): a review. Food Chem Toxicol 1988; 26: 59–70.
  • Nugon-Brudon L, Rabot S. Glucosinolates and glucosinolate derivatives: implications for protection protecting against chemical carcinogenesis. Nutr Res Rev 1994; 7: 205–31.
  • Duncan AJ, Milne JA. Glucosinolates. Aspects Appl Biol 1989; 19: 75–92.
  • Nugon-Baudon L, Szylit 0, Raibaud P. Production of toxic glucosinolate derivatives from rapeseed meal by intestinal microflora of rat and chicken. J Sci Food Agric 1988; 43: 299–308.
  • Nugon-Baudon L, Rabot S, Szylit 0, Raibaud P. Glucosino-lates toxicity in growing rats: interactions with the hepatic detoxification system. Xenobiotica 1990; 20: 223–30.
  • Rabot S, Nugon-Baudon L, Szylit 0. Alterations of the hepatic xenobiotic-metabolizing enzymes by a glucosinolate-rich diet in germ-free rats: influence of a pre-induction with phenobarbital. Br J Nutr 1993; 70: 347–54.
  • Nathalie R, Nugon-Baudon L, Flinois J-P, Beaune P. Hepatic and intestinal cytochrome P-450, glutathione-S transferase and UDP-glucuronosyl transferase are affected by six types of dietary fiber in rats inoculated with human whole fecal flora. J Nutr 1994; 124: 1581–7.
  • Nugon-Baudon L, Robot S, Flinois JP, Lory S, Beaune Ph. Effects of the bacterial status of rats on the changes in some liver cytochrome P450 (EC 1.14.14.1) apoprotein consequent to a glucosinolate-rich diet. Br J Nutr 1998; 80: 231–4.
  • Caldwell DR, Bryant MP. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol 1966; 14: 794–801.
  • Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning. The Laboratory Manual, 2nd Edition. Cold Spring Harbor Labo-ratory Press, 1989.
  • Moore WEC, Holdman LV. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 1974; 27: 961–79.
  • Goldin BR. Intestinal microflora: metabolism of drugs and carcinogens. Ann Med 1990; 22: 43–8.
  • Moore WE, Moore LH. Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol 1995; 61: 3202–7.
  • Smith VS. Metabolism of drugs and other foreign compounds by the intestinal microorganisms. World Rev Nutr Diet 1978; 29: 60–76.
  • Klaaseen CD, Amdur MO, Doull J. In: Sipes IG, Gandolfi J, eds Casarett and Doulls Toxicology: The Basic Science of Poisons, 3rd Edition. 1986: 64–98.
  • Fulco AJ. P450„-3 and other inducible bacterial P450 cy-tochromes: biochemistry and regulation. Annu Rev Pharma-col Toxicol 1991; 31: 177–203.
  • Kanemoto RH, Pwell AT, Akiyoshi DE, Regier DA, Kerstet-ter RA, Nester EW, Hawes MC, Gordon MP. Nucleotide sequence and analysis of the plant-inducible locus pinF from Agrobacterium tumefaciens. J Bacteriol 1989; 171: 2506–12.
  • Katagiri M, Ganguli BN, Gunsalus IC. A soluble cytochrome P-450 functional in methylene hydroxylation. J Biol Chem 1968; 243: 3543–6.
  • Nelson DR, Koymans L, Kamataki T, et al. P450 superfam-ily: update on new sequences, gene mapping, accession num-bers and nomenclature. Pharmacogenetics 1996; 6: 1–42.
  • Scott JA, Collins FH, Feyereisen R. Diversity of cytochrome P450 genes in the mosquito, Anopheles albimanus. Biochem Biophys Res Commun 1994; 205: 1452–9.
  • Gushchin GV, Gushchin MI, Gerber N, Boyd RT. A novel cytochrome P450 3A isoenzyme in rat intestinal microsomes. Biochem Biophys Res Commun 1999; 255: 394–8.
  • Peterson JA, Lu J-Y, Geisselsoder J, et al. Cytochrome P-450terp isolation and purification of the proteins and cloning and sequencing of its operon. J Biol Chem 1992; 267: 14193–203.
  • Unger BP, Gunsalus IC, Sligar SG. Nucleotide sequence of the Pseudomonas putida cytochrome P-450cam gene and its expression in Escherichia coli. J Biol Chem 1986; 261: 1158–63.
  • Ruettinger RT, Wen LP, Fulco AJ. Coding nucleotide, 5' regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem 1989; 264: 10987–95.
  • He JS, Ruettinger RT, Lie H-M, Fulco AJ. Molecular cloning, coding nucleotides and the deduced amino acid se-quence of P-450BM-1 from Bacillus megaterium. Biochim Biophys Acta 1989; 1009: 301–3.
  • Kanemota RH, Powell AT, Akiyoshi DE, et al. Nucleotide sequence and analysis of the plant-inducible locus pinF from Agrobacterium tumefaciens. J Bacteriol 1989; 171: 2506–12.
  • Omer CA, Lenstra R, Litle PJ, et al. Genes for two herbicide-inducible cytochromes P-450 from Streptomyces griseolus. J Bacteriol 1990; 172: 3335–45.
  • Horii M, Ishizaki T, Paik S-Y, Manome T, Murooka Y. An operon containing the genes for cholesterol oxidase and a cytochrome P-450-like protein from a Streptomyces sp. J Bacteriol 1990; 172: 3644–53.
  • Weber JM, Leung JO, Swanson SJ, Idler KB, McAlpine JB. An erythromycin derivative produced by targeted gene dis-ruption in Saccharopolyspor a erythraea. Science 1991; 252: 114–7.
  • Ahn KS, Wake RG. Variations and coding features of the sequence spanning the replication terminus of Bacillus subtilis 168 and W23 chromosomes. Gene 1991; 98: 107–12.
  • John GH, Hasler JA, He YH, Halpert JR. Escherichia coli expression and characterization of cytochrome P450 2B11, 2B1, and 2B5. Arch Biochem Biophys 1994; 314: 367–75.
  • Koymans L, Donne-Op Den Kelder GM, Kopple Te JM, Vermeulen NPE. Cytochromes P450: their active-site struc-ture and mechanism of oxidation. Drug Metab Rev 1993; 25: 325–87.
  • Nelson DR, Kamataki R, Waxman DJ, et al. The P450 superfamily: update on new sequences, gene mapping, acces-sion numbers, early trivial names of enzymes, and nomencla-ture. DNA Cell Biol 1993; 12: 1–51.
  • Omura T, Sato R. A new cytochrome in liver microsomes. J Biol Chem 1961; 237: PC1375–6.
  • Kato Y, Kimura R. Role of 3,4-dichlorophenyl methyl sul-fone, a metabolite of o-dichlorobenzene, in the changes in hepatic microsomal drug-metabolizing enzymes caused by o-dichlorobenzene administration in rats. Toxicol Appl Phar-macol 1997; 145: 277–84.
  • Kato Y, Yamada S, Sato M, Kimura R. Role of 2,3,5-trichlorophenyl methyl sulfone, a metabolite of 1,2,4-trichlorobenzene, in the induction of hepatic microsomal drug-metabolizing enzymes by 1,2,4-trichlorobenzene in rats. Toxicol Appl Pharmacol 1993; 122: 214–21.
  • Baron SF, Hylemon PB. In: Makie, White, eds Gastrointesti-nal Microbiology, vol. I, 1st Edition. Chapman and Hall, 1997: 471.
  • Mansuy D, Renaud J-P. Cytochrome P450: Structure, Mech-anism, and Biochemistry, 2nd Edition. Ortiz de Montellano: Plenum Press, 1995: 537.