Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 33, 2021 - Issue 11
321
Views
7
CrossRef citations to date
0
Altmetric
Articles

Lagerstätte effect drives notosuchian palaeodiversity (Crocodyliformes, Notosuchia)

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3031-3040 | Received 03 Aug 2020, Accepted 28 Oct 2020, Published online: 14 Nov 2020

References

  • Akaike H. 1973. Information theory and an extension of the maximum likehood principle. In: Petrov BN, Csáki F, editors. Proceedings of the second international symposium on information theory. Akadémiai Kiadó: Budapest; p. 267–281.
  • Akaike H. 1978. On the likelihood of a time series model. J Royal Stat Soc Series D (The Statician). 27:217–235.
  • Alroy J. 2010. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. In: Alroy J, Hunt G, editors. Quantitative methods in paleobiology. Paleontological society papers. New Haven: The Paleontological Society; p. 55–80.
  • Antoine P-O, Abello MA, Adnet S, Altamirano AJ, Baby P, Billet G, Boivin M, Calderón Y, Candela A, Chabain J, et al. 2016. A 60-million-year cenozoic history of western amazonian ecosystems in Contamana, eastern Peru. Gondwana Res. 31:30–59. doi:10.1016/j.gr.2015.11.001.
  • Antunes MT. 1975. Iberosuchus, crocodile Sebecosuchien nouveau, l’Eocène ibérique au Nord de la Chaine Centrale, et l’origine du canyon de Nazaré. Comunic Serv Geol Port. 59:285–330.
  • Bandeira KLN, Brum AS, Pêgas RV, Cidade GM, Holgado B, Cidade A, de Souza RG. 2018. The Baurusuchidae vs Theropoda record in the Bauru Group (Upper Cretaceous, Brazil): a taphonomic perspective. J Iber Geol. 44:25–54. doi:10.1007/s41513-018-0048-4.
  • Barton K 2019. MuMIN: multi-model inference. R package version 1.43.6. https://cran.r-project.org/web/packages/MuMIn/MuMI
  • Batezelli A. 2017. Continental systems tracts of the Brazilian Cretaceous Bauru Basin and their relationship with the tectonic and climatic evolution of South America. Basin Res. 29:1–25.
  • Benson RBJ, Butler RJ. 2011. Uncovering the diversification history of marine tetrapods: ecology influences the effect of geological sampling biases. Geol Soc Spec Publ. 358:191–208. doi:10.1144/SP358.13.
  • Benson RBJ, Butler RJ, Lindgren J, Smith AS. 2010. Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. P Roy Soc B-Biol Sci. 277:829–834.
  • Benton MJ. 2015. Palaeodiversity and formation counts: redundancy or bias? Palaeontology. 58:1003–1029. doi:10.1111/pala.12191.
  • Bronzati M, Montefeltro FC, Langer MC. 2015. Diversification events and the effects of mass extinctions on Crocodyliformes evolutionary history. R Soc Open Sci. 2:140385. doi:10.1098/rsos.140385.
  • Buckley GA, Brochu CA, Krause DW, Pol D. 2000. A pug-nosed crocodyliform from the Late Cretaceous of Madagascar. Nature. 405:941–944. doi:10.1038/35016061.
  • Buffetaut E. 1974. Trematochampsa taqueti, un Crocodilien nouveau du Sénonien inférieur du Niger. C R Acad Sci, Ser D, Sci Nat. 279:1749–1752.
  • Buffetaut E. 1976. Ostéologie et affinités de Trematochampsa taqueti (Crocodylia, Mesosuchia) du Sénonien inférieur d’In Beceten (République du Niger). Geobios. 9:143–198. doi:10.1016/S0016-6995(76)80013-7.
  • Buffetaut E, Hoffstetter R. 1977. Découverte du crocodilien Sebecus dans le Miocène du Pérou oriental. C R Acad Sci, Ser D, Sci Nat. 284:1663–1666.
  • Butler R, Barrett P, Nowbath S, Upchurch P. 2009. Estimating the effects of sampling biases on pterosaur diversity patterns: implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology. 35:432–446. doi:10.1666/0094-8373-35.3.432.
  • Butler RJ, Benson RBJ, Barrett PM. 2013. Pterosaur diversity: untangling the influence of sampling biases, Lagerstätten, and genuine biodiversity signals. Palaeogeogr Palaeoclimatol Palaeoecol. 372:78–87. doi:10.1016/j.palaeo.2012.08.012.
  • Carvalho I de S, Campos ACA, Nobre PH. 2005. Baurusuchus salgadoensis, a new Crocodylomorpha from the Bauru Basin (Cretaceous), Brazil. Gondwana Res. 8:11–30. doi:10.1016/S1342-937X(05)70259-8.
  • Castro MC, Goin FJ, Ortiz-Jaureguizar E, Vieytes EC, Tsukui K, Ramezani J, Batezelli A, Marsola JCA, Langer MC. 2018. A Late Cretaceous mammal from Brazil and the first radioisotopic age for the Bauru Group. R Soc Open Sci. 5:180482. doi:10.1098/rsos.180482.
  • Chiappe LM. 1988. A new trematochampsid crocodile from the Early Cretaceous of north-western Patagonia, Argentina and its palaeobiogeographical and phylogenetic implications. Cret Res. 9:379–389. doi:10.1016/0195-6671(88)90009-2.
  • Cleary TJ, Benson RBJ, Evans SE, Barrett PM. 2018. Lepidosaurian diversity in the Mesozoic–Palaeogene: the potential roles of sampling biases and environmental drivers. R Soc Open Sci. 5:171830. doi:10.1098/rsos.171830.
  • Cohen K, Finney S, Gibbard P, Fan J. 2013. The ICS international chronostratigraphic chart. Episodes. 36:199–204. doi:10.18814/epiiugs/2013/v36i3/002.
  • Company J, Pereda-Suberbiola X, Ruiz-Omeñaca JI, Buscalioni AD. 2005. A new species of Doratodon (Crocodyliformes: Ziphosuchia) from the Late Cretaceous of Spain. J Vertebr Paleontol. 25:343–353.
  • Coria RA, Ortega F, Arcucci A, Currie PJ. 2019. A new and complete peirosaurid (Crocodyliformes, Notosuchia) from Sierra Barrosa (Santonian, Upper Cretaceous) of the Neuquén Basin, Argentina. Cret Res. 95:89–105. doi:10.1016/j.cretres.2018.11.008.
  • Cox DR, Snell EJ. 1989. Analysis of binary data. 2nd ed. Boca Raton (FL): Taylor & Francis.
  • Dal Sasso C, Pasini G, Fleury G, Maganuco S. 2017. Razanandrongobe sakalavae, a gigantic mesoeucrocodylian from the Middle Jurassic of Madagascar, is the oldest known notosuchian. PeerJ. 5:e3481. doi:10.7717/peerj.3481.
  • de Celis A, Narváez I, Ortega F. 2019. Spatiotemporal palaeodiversity patterns of modern crocodiles (Crocodyliformes: Eusuchia). Zool J Linn Soc. 189(2):635–656. doi:10.1093/zoolinnean/zlz038.
  • Dean CD, Chiarenza AA, Maidment SCR. 2020. Formation binning: a new method for increased temporal resolution in regional studies, applied to the Late Cretaceous dinosaur fossil record of North America. Palaeontology. 1–21. doi:10.1111/pala.12492
  • Dean CD, Mannion PD, Butler RJ. 2016. Preservational bias controls the fossil record of pterosaurs. Palaeontology. 59:225–247. doi:10.1111/pala.12225.
  • Dias-Brito D, Musacchio EA, de Castro JC, Maranhao M da SAS, Suárez JM, Rodrigues R. 2001. Grupo Bauru: uma unidade continental do Cretáceo no Brasil - concepções baseadas em dados micropaleontológicos, isotópicos e estratigráficos. Rev De Paléobiologie. 20:245–304.
  • Dunne EM, Close RA, Button DJ, Brocklehurst N, Cashmore DD, Lloyd GT, Butler RJ. 2018. Diversity change during the rise of tetrapods and the impact of the ‘Carboniferous rainforest collapse’. P Roy Soc B-Biol Sci. 285:20172730.
  • Fiorelli LE, Leardi JM, Hechenleitner EM, Pol D, Basilici G, Grellet-Tinner G. 2016. A new Late Cretaceous crocodyliform from the western margin of Gondwana (La Rioja Province, Argentina). Cret Res. 60:194–209. doi:10.1016/j.cretres.2015.12.003.
  • Gasparini Z. 1971. Los Notosuchia del Cretácico de América del Sur como un nuevo infraorden de los Mesosuchia (Crocodilia). Ameghiniana. 8:83–103.
  • Gasparini Z. 1984. New tertiary Sebecosuchia (Crocodylia: Mesosuchia) from Argentina. J Vertebr Paleontol. 4:85–95. doi:10.1080/02724634.1984.10011988.
  • Geroto CFC, Bertini RJ. 2019. New material of Pepesuchus (Crocodyliformes; Mesoeucrocodylia) from the Bauru Group: implications about its phylogeny and the age of the Adamantina Formation. Zool J Linn Soc. 185:312–334. doi:10.1093/zoolinnean/zly037.
  • Gobbo-Rodrigues SR, Petri S, Bertini RJ. 1999. Ocorrências de ostrácodes na Formação Araçatuba do Grupo Bauru, Cretáceo Superior da Bacia do Paraná e possibilidades de correlação com depósitos isócronos argentinos - parte i: Familia Hylocyprididae. Acta Geol Leopold. 23:3–13.
  • Godoy PL, Bronzati M, Eltink E, Marsola JC de A, Cidade GM, Langer MC, Montefeltro FC. 2016. Postcranial anatomy of Pissarrachampsa sera (Crocodyliformes, Baurusuchidae) from the Late Cretaceous of Brazil: insights on lifestyle and phylogenetic significance. PeerJ. 4:e2075. doi:10.7717/peerj.2075.
  • Iori FV, Carvalho I de S, Marinho T da S. 2016. Postcranial skeletons of Caipirasuchus (Crocodyliformes, Notosuchia, Sphagesauridae) from the Upper Cretaceous (Turonian-Santonian) of the Bauru Basin, Brazil. Cret Res. 60:109–120. doi:10.1016/j.cretres.2015.11.017.
  • Langston W. 1965. Fossil crocodilians from Colombia and the Cenozoic history of the Crocodylia in South America. Univ Calif Publ Geol Sci. 52:1–157.
  • Langston W, Gasparini Z. 1997. Crocodilians, Gryposuchus, and the South American gavials. In: Kay RF, Madden RH, Cifelli RL, Flynn J, editors. Vertebrate paleontology in the neotropics. The Miocene fauna of La Venta, Colombia. Washington: Smithsonian Institution Press; p. 113–154.
  • Larsson HCE, Sues H-D. 2007. Cranial osteology and phylogenetic relationships of Hamadasuchus rebouli (Crocodyliformes: Mesoeucrocodylia) from the Cretaceous of Morocco. Zool J Linn Soc. 149:533–567. doi:10.1111/j.1096-3642.2007.00271.x.
  • Lloyd GT, Friedman M. 2013. A survey of palaeontological sampling biases in fishes based on the Phanerozoic record of Great Britain. Palaeogeogr Palaeoclimatol Palaeoecol. 372:5–17. doi:10.1016/j.palaeo.2012.07.023.
  • Mannion PD, Benson RBJ, Carrano MT, Tennant JP, Judd J, Butler RJ. 2015. Climate constrains the evolutionary history and biodiversity of crocodylians. Nat Commun. 6:1–9. doi:10.1038/ncomms9438.
  • Mannion PD, Chiarenza AA, Godoy PL, Cheah YN. 2019. Spatiotemporal sampling patterns in the 230 million year fossil record of terrestrial crocodylomorphs and their impact on diversity. Palaeontology. 62:615–637. doi:10.1111/pala.12419.
  • Marinho T da S, Iori FV, de Souza Carvalho I, de Vasconcellos FM. 2013. Gondwanasuchus scabrosus gen. et sp. nov., a new terrestrial predatory crocodyliform (Mesoeucrocodylia: Baurusuchidae) from the Late Cretaceous Bauru Basin of Brazil. Cret Res. 44:104–111. doi:10.1016/j.cretres.2013.03.010.
  • Martinelli AG, Marinho TS, Iori FV, Ribeiro LCB. 2018. The first Caipirasuchus (Mesoeucrocodylia, Notosuchia) from the Late Cretaceous of Minas Gerais, Brazil: new insights on sphagesaurid anatomy and taxonomy. PeerJ. 6:e5594. doi:10.7717/peerj.5594.
  • Martinelli AG, Riff D, Lopes RP. 2011. Discussion about the occurrence of the genus Aeolosaurus Powell 1987 (Dinosauria, Titanosauria) in the Upper Cretaceous of Brazil. Gaea. 7:34–40. doi:10.4013/gaea.2011.71.03.
  • Marx FG, Uhen MD. 2010. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science. 327:993–996. doi:10.1126/science.1185581.
  • Meunier LMV, Larsson HCE. 2018. Trematochampsa taqueti as a nomen dubium and the crocodyliform diversity of the Upper Cretaceous In Beceten Formation of Niger. Zool J Linn Soc. 182:659–680. doi:10.1093/zoolinnean/zlx061.
  • Miller KG, Kominz MA, Browning JC, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF. 2005. The phanerozoic record of global sea-level change. Science. 310:1293–1298. doi:10.1126/science.1116412.
  • Montefeltro FC, Larsson HCE, Langer MC. 2011. A new baurusuchid (Crocodyliformes, Mesoeucrocodylia) from the Late Cretaceous of Brazil and the phylogeny of Baurusuchidae. PLoS ONE. 6:e21916. doi:10.1371/journal.pone.0021916.
  • Nicholson DB, Holroyd PA, Benson RBJ, Barrett PM. 2015. Climate-mediated diversification of turtles in the Cretaceous. Nat Commun. 6:1–8. doi:10.1038/ncomms8848.
  • Paolillo A, Linares O. 2007. Nuevos cocodrilos Sebecosuchia del Cenozoico suramericano (Mesosuchia: Crocodylia). Paleobiología Neotropical. 3:1–25.
  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC 2018. nlme: linear and nonlinear mixed effects models. R package version 3.1-137. https://cran.r-project.org/package=nlme
  • Pol D, Leardi JM. 2015. Diversity patterns of Notosuchia (Crocodyliformes, Mesoeucrocodylia) during the Cretaceous of Gondwana. In: Fernández M, Herrera Y, editors. Reptiles extintos - Volumen en homenaje a Zulma Gasparini. Publicación electrónica de la Asociación Paleontológica Argentina. Buenos Aires: Asociación Paleontológica Argentina; p. 172–186.
  • Pol D, Nascimento PM, Carvalho AB, Riccomini C, Pires-Domingues A, Zaher H. 2014. A new notosuchian from the Late Cretaceous of Brazil and the phylogeny of advanced notosuchians. PLoS ONE. 9:e93105. doi:10.1371/journal.pone.0093105.
  • Pol D, Turner AH, Norell MA. 2009. Morphology of the Late Cretaceous crocodylomorph Shamosuchus djadochtaensis and a discussion of neosuchian phylogeny as related to the origin of Eusuchia. Bull Am Mus Nat Hist. 324:1–103.
  • Prokoph A, Shields GA, Veizer J. 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C,87Sr/86Sr and δ34S database through Earth history. Earth-Sci Rev. 87:113–133. doi:10.1016/j.earscirev.2007.12.003.
  • R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (Austria). https://www.R-project.org/
  • Rabi M, Sebök N. 2015. A revised Eurogondwana model: Late Cretaceous notosuchian crocodyliforms and other vertebrate taxa suggest the retention of episodic faunal links between Europe and Gondwana during most of the Cretaceous. Gondwana Res. 28:1197–1211. doi:10.1016/j.gr.2014.09.015.
  • Raup DM. 1972. Taxonomic diversity during the Phanerozoic. Science. 177:1065–1071. doi:10.1126/science.177.4054.1065.
  • Riff D, Kellner AWA. 2011. Baurusuchid crocodyliforms as theropod mimics: clues from the skull and appendicular morphology of Stratiotosuchus maxhechti (Upper Cretaceous of Brazil). Zool J Linn Soc. 163:37–56. doi:10.1111/j.1096-3642.2011.00713.x.
  • Romano C, Koot MB, Kogan I, Brayard A, Minikh AV, Brinkman W, Bucher H, Kriwet J. 2016. Permian–Triassic osteichthyes (bony fishes): diversity dynamics and body size evolution. Biol Rev. 91:106–147.
  • Rossman T, Rauhe M, Ortega F. 2000. Studies on Cenozoic crocodiles: 8. Bergisuchus dietrichbergi Kuhn (Sebecosuchia: Bergisuchidae n. fam.) from the Middle Eocene of Germany, some new systematic and biological conclusions. PalZ. 74:379–392. doi:10.1007/BF02988108.
  • Rusconi C. 1933. Sobre reptiles cretáceos del Uruguay (Uruguaysuchus aznarezi, n.g. n.sp.) y sus relaciones con los notosúquidos de Patagonia. Montevideo: Imprenta Nacional.
  • Saber S, Sertich JJW, Sallam HM, Ouda KA, Connor PMO, Seiffert ER. 2018. An enigmatic crocodyliform from the Upper Cretaceous Quseir Formation, central Egypt. Cret Res. 90:174–184. doi:10.1016/j.cretres.2018.04.004.
  • Santucci RM, Bertini RJ. 2001. Distribuição paleogeográfica e biocronológica dos titanossauros (Saurischia, Sauropoda) do Grupo Bauru, Cretáceo Superior do Sudeste Brasileiro. Rev Bras Geocienc. 31:307–314. doi:10.25249/0375-7536.2001313307314.
  • Scotese CR 2016. PALEOMAP PaleoAtlas for GPlates and the PaleoDataPlotter program, PALEOMAP project. http://earthbyte.org/paleomap–paleo.
  • Seilacher A. 1970. Begriff und bedeutung der Fossil-Lagerstätten. N Jb Geol Paläont Mh. 1:34–39.
  • Sepkoski JJ, Koch CF. 1996. Evaluating paleontologic data relating to bio-events. In: Walliser OH, editor. Global events and event stratigraphy in the phanerozoic: international interdisciplinary cooperation in the IGCP-project 216 “Global events in Earth history”. Berlin: Springer-Verlag; p. 21–34.
  • Smith AG, Smith DG, Funnell B. 2004. Atlas of Mesozoic and Cenozoic coastlines. Cambridge: Cambridge University Press.
  • Soto M, Pol D, Perea D. 2011. A new specimen of Uruguaysuchus aznarezi (Crocodyliformes: Notosuchia) from the middle Cretaceous of Uruguay and its phylogenetic relationships. Zool J Linn Soc. 163:173–198. doi:10.1111/j.1096-3642.2011.00717.x.
  • Tennant JP, Mannion PD, Upchurch P. 2016. Environmental drivers of crocodyliform extinction across the Jurassic/Cretaceous transition. P Roy Soc B-Biol Sci. 283:20152840.
  • Walker FM, Dunhill AM, Benton MJ. 2020. Variable preservation potential and richness in the fossil record of vertebrates. Palaeontology. 63:313–329. doi:10.1111/pala.12458.
  • Wilberg EW, Turner AH, Brochu CA. 2019. Evolutionary structure and timing of major habitat shifts in Crocodylomorpha. Sci Rep. 9:1–10. doi:10.1038/s41598-018-36795-1.
  • Woodward AS. 1896. On two Mesozoic crocodilians from the red sandstones of the territory of Neuquen (Argentine Republic). An. Mus. La Plata. Paleontología Argentina. 4:1–20.
  • Wu X-C, Sues H-D. 1996. Anatomy and phylogenetic relationships of Chimaerasuchus paradoxus, an unusual crocodyliform reptile from the Lower Cretaceous of Hubei, China. J Vertebr Paleontol. 16(4):688–702. doi:10.1080/02724634.1996.10011358.
  • Wu X-C, Sues H-D Sun A. 1995. A plant-eating crocodyliform reptile from the Cretaceous of China. Nature. 376:678–680. doi:10.1038/376678a0.
  • Zaher H, Pol D, Carvalho AB, Riccomini C, Campos DA, Nava W. 2006. Redescription of the cranial morphology of Mariliasuchus amarali, and its phylogenetic affinities (Crocodyliformes, Notosuchia). Am Mus Novit. 3512:1–40.
  • Zeileis A, Hothorn T. 2002. Diagnostic checking in regression relationships. R News. 2:7–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.