Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 36, 2024 - Issue 2
111
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Local growth patterns in tibia associate with restricted external fundamental system in Cervus elaphus. Implications for life history strategies in fossil groups

ORCID Icon
Pages 285-292 | Received 27 May 2022, Accepted 10 Dec 2022, Published online: 02 Jan 2023

References

  • Amson E, Kolb C, Scheyer TM, Sánchez-Villagra MR. 2015. Growth and life history of Middle Miocene deer (Mammalia, Cervidae) based on bone histology. Comptes Rendus Palevol. 14(8):637–645. doi:10.1016/j.crpv.2015.07.001.
  • Andrade RC, Bantim RAM, Lima FJD, Campos LDS, Lhds E, Sayão JM. 2015. New data about the presence and absence of the external fundamental system in archosaurs. Cad Cult E Ciênc. 14(1):200–211. doi:10.14295/cad.cult.cienc.v14i1.932.
  • Calderón T, Arnold W, Stalder G, Painer J, Köhler M. 2021. Labelling experiments in red deer provide a general model for early bone growth dynamics in ruminants. Sci Rep. 11(1):14074. doi:10.1038/s41598-021-93547-4.
  • Calderón T, DeMiguel D, Arnold W, Stalder G, Köhler M. 2019. Calibration of life history traits with epiphyseal closure, dental eruption and bone histology in captive and wild red deer. J Anat. 235(2):205–216. doi:10.1111/joa.13016.
  • Carranza J. 2007. Cervus elaphus Linnaeus, 1758. Ciervo rojo. In: Atlas Libro Rojo Los Mamíferos Terr Esp; p. 352–355. [place unknown]
  • Chinsamy-Turan A. 2005. The microstructure of dinosaur bone. Baltimore: The Johns Hopkins University Press.
  • Company J, Pereda-Suberbiola X. 2017. Long bone histology of a eusuchian crocodyliform from the upper cretaceous of Spain: implications for growth strategy in extinct crocodiles. Cretac Res. 72:1–7. doi:10.1016/j.cretres.2016.12.002
  • de Buffrénil V, de Muizon C, Dumont M, Laurin M, Lambert O. 2021a. Diversity of bone microstructure in mammals. In: Vertebr Skelet Histol Paleohistology. 1st. Boca Raton: CRC Press; p. 564–614. doi: 10.1201/9781351189590-29.
  • de Buffrénil V, Quilhac A, Castanet J. 2021b. Cyclical growth and skeletochronology. In: Vertebr Skelet Histol Paleohistology. 1st. Boca Raton: CRC Press; p. 626–644. doi: 10.1201/9781351189590-31.
  • de Buffrénil, de Ricqlès A, Zylberberg L, Padian K. editors. 2021c. Vertebrate skeletal histology and paleohistology. Boca Raton London New York: CRC Press, Taylor & Francis Group.
  • Erickson GM. 2005. Assessing dinosaur growth patterns: a microscopic revolution. Trends Ecol Evol. 20(12):677–684. doi:10.1016/j.tree.2005.08.012.
  • Fondevilla V, Dalla Vecchia FM, Gaete R, Galobart ‘Á., Moncunill-Solé B, Köhler M. 2018. Ontogeny and taxonomy of the hadrosaur (Dinosauria, Ornithopoda) remains from Basturs Poble bonebed (late early Maastrichtian, Tremp Syncline, Spain). PLOS ONE. 13(10): 1–33. doi:10.1371/journal.pone.0206287.
  • Hayashi S, Carpenter K, Suzuki D. 2009. Different growth patterns between the skeleton and osteoderms of Stegosaurus (Ornithischia: Thyreophora). J Vertebr Paleontol. 29(1):123–131. doi:10.1080/02724634.2009.10010366.
  • Horner JR, de Ricqlès A, Padian K. 1999. Variation in dinosaur skeletochronology indicators: implications for age assessment and physiology. Paleobiology. 25(3):295–304. doi:10.1017/S0094837300021308.
  • Huttenlocker AK, Woodward HN, Hall BK. 2013. The biology of bone. In: Padian K, Lamm E-T, editors. Bone Histol Foss Tetrapods. Berkeley: University of California Press; p. 13–34.
  • Jordana X, Marín-Moratalla N, Moncunill-Solè B, Nacarino-Meneses C, Köhler M. 2016. Ontogenetic changes in the histological features of zonal bone tissue of ruminants: a quantitative approach. Comptes Rendus Palevol. 15(1–2):255–266. doi:10.1016/j.crpv.2015.03.008.
  • Klein N, Sander PM. 2007. Bone histology and growth of the prosauropod dinosaur Plateosaurus engelhardti Von Meyer, 1837 from the Norian bonebeds of Trossingen (Germany) and Frick (Switzerland). Spec Pap Paleontol. 77: 169–206.
  • Köhler M, Marín-Moratalla N, Jordana X, Aanes R. 2012. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature. 487(7407):358–361. doi:10.1038/nature11264.
  • Köhler M, Moyà-Solà S. 2009. Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc Natl Acad Sci. 106(48):20354–20358. doi:10.1073/pnas.0813385106.
  • Kolb C, Scheyer TM, Lister AM, Azorit C, de Vos J, Schlingemann MA, Rössner GE, Monaghan NT, Sánchez-Villagra MR. 2015. Growth in fossil and extant deer and implications for body size and life history evolution. BMC Evol Biol. 15(1):19. doi:10.1186/s12862-015-0295-3.
  • Lee AH, Huttenlocker AK, Padian K, Woodward HN. 2013. Analysis of growth rates. In: Padian K, Lamm E-T, editors. Bone Histol Foss Tetrapods. Berkeley: University of California Press; p.217–252.
  • Lee AH, O’Connor PM. 2014. Bone histology confirms determinate growth and small body size in the noasaurid theropod Masiakasaurus knopfleri. J Vertebr Paleontol. 33(4):865–876. doi:10.1080/02724634.2013.743898.
  • Marín-Moratalla N, Jordana X, Köhler M. 2013. Bone histology as an approach to providing data on certain key life history traits in mammals: implications for conservation biology. Mamm Biol. 78(6):422–429. doi:10.1016/j.mambio.2013.07.079.
  • Nacarino-Meneses C, Chinsamy A, Mayda S, Kaya T, Erismis UC. 2020. Bone histology, palaeobiology, and early diagenetic history of extinct equids from Turkey. Quat Res. 100:240–259. doi:10.1017/qua.2020.87
  • Nacarino-Meneses C, Jordana X, Köhler M. 2016. Histological variability in the limb bones of the Asiatic wild ass and its significance for life history inferences. PeerJ. 4:e2580. doi:10.7717/peerj.2580
  • Nacarino-Meneses C, Orlandi-Oliveras G. 2019. The life history of European Middle Pleistocene equids: first insights from bone histology. Hist Biol. 33(5):672–682. doi:10.1080/08912963.2019.1655011.
  • Orlandi-Oliveras G, Jordana X, Moncunill-Solé B, Köhler M. 2016. Bone histology of the giant fossil dormouse Hypnomys onicensis (Gliridae, Rodentia) from Balearic Islands. Comptes Rendus Palevol. 15(1–2):238–244. doi:10.1016/j.crpv.2015.05.001.
  • Orlandi-Oliveras G, Nacarino-Meneses C, Koufos GD, Köhler M. 2018. Bone histology provides insights into the life history mechanisms underlying dwarfing in hipparionins. Sci Rep. 8(1):17203. doi:10.1038/s41598-018-35347-x.
  • Padian K, Lamm E-T, Werning S. 2013. Selection of specimens. In: Padian K, Lamm E-T, editors. Bone Histol Foss Tetrapods. Berkeley: University of California Press; p. 35–54.
  • Palkovacs EP. 2003. Explaining adaptive shifts in body size on islands: a life history approach. Oikos. 103(1):37–44. doi:10.1034/j.1600-0706.2003.12502.x.
  • Ponton F, Elżanowski A, Castanet J, Chinsamy A, Margerie ED, Ricqlès AD, Cubo J. 2004. Variation of the outer circumferential layer in the limb bones of birds. Acta Ornithol. 39(2):137–140. doi:10.3161/068.039.0210.
  • Prondvai E, Godefroit P, Adriaens D, Hu D-Y. 2018. Intraskeletal histovariability, allometric growth patterns, and their functional implications in bird-like dinosaurs. Sci Rep. 8(1):258. doi:10.1038/s41598-017-18218-9.
  • Rainwater TR, Woodward HN, Woodward AR, Wilkinson PM. 2022. Evidence of determinate growth in an American alligator (Alligator mississippiensis) based on long‐term recapture and osteohistological confirmation. Anat Rec. 305(10):3101–3108. doi:10.1002/ar.24688.
  • R Core Team. 2021. R: a language and environment for statistical computing. https://www.R-project.org
  • Sampson SD, Carrano MT, Forster CA. 2001. A bizarre predatory dinosaur from the Late Cretaceous of Madagascar. Nature. 409(6819):504–506. doi:10.1038/35054046.
  • Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9(7):671–675. doi:10.1038/nmeth.2089.
  • Stearns SC. 1992. The Evolution of Life Histories. New York: Oxford University Press.
  • Veitschegger K, Kolb C, Amson E, Scheyer TM, Sánchez-Villagra MR. 2018. PLOS ONE. 13(11): 1–17. doi:10.1371/journal.pone.0206791.
  • Woodward HN, Horner JR, Farlow JO. 2011. Osteohistological Evidence for Determinate Growth in the American Alligator. J Herpetol. 45(3):339–342. doi:10.1670/10-274.1.
  • Woodward HN, Horner JR, Farlow JO. 2014. Quantification of intraskeletal histovariability in Alligator mississippiensis and implications for vertebrate osteohistology. PeerJ. 2:e422. doi:10.7717/peerj.422
  • Woodward HN, Padian K, Lee AH. 2013. Skeletochronology. In: Padian K, Lamm E-T, editors. Bone histol foss tetrapods. Berkeley: University of California Press; p. 195–216 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.