Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 36, 2024 - Issue 7
4,894
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Tessellated calcified cartilage and placoid scales of the Neogene megatooth shark, Otodus megalodon (Lamniformes: Otodontidae), offer new insights into its biology and the evolution of regional endothermy and gigantism in the otodontid clade

, , , , , , & show all
Pages 1259-1273 | Received 11 Jan 2023, Accepted 02 May 2023, Published online: 23 Jun 2023

References

  • Aguilera OA, García L, Cozzuol MA. 2008. Giant-toothed white sharks and cetacean trophic interaction from the Pliocene Caribbean Paraguaná Formation. Paläont Z. 82:204–208. doi:10.1007/BF02988410
  • Akimoto K, Tanaka M. 2004. Sublittoral benthic foraminiferal assemblages from the Tsuchishio Formation (upper Miocene), northeastern margin of the Kanto Mountains, central Japan. Asso Geol Collabor Japan Monogr. 52. 75–79. in Japanese with English abstract
  • Amalfitano J, Dalla Vecchia F, Carnevale G, Fornaciari E, Roghi G, Giusberti L. 2022. Morphology and paleobiology of the Late Cretaceous large-sized shark Cretodus crassidens (Dixon, 1850) (Neoselachii; Lamniformes). J Paleontol. 96:1166–1188. doi:10.1017/jpa.2022.23
  • Ankhelyi MV, Wainwright DK, Lauder GV. 2018. Diversity of dermal denticle structure in sharks: skin surface roughness and three‐dimensional morphology. J Morphol. 279:1‒23. doi:10.1002/jmor.20836
  • Bechert DW, Bruse M, Hage W, Meyer R. 2000. Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften. 87:157–171. doi:10.1007/s001140050696
  • Bechert DW, Hoppe G, Reif W-E. 1985. On the drag reduction of the shark skin. Am Inst Aeronau Astronau. 85-0546:1–18. doi:10.2514/6.1985-546
  • Bendix-Almgreen SE. 1983. Carcharodon megalodon from the Upper Miocene of Denmark, with comments on elasmobranch tooth enameloid: coronoïn. Bulletin of the Geological Society of Denmark. 32:1–32. doi:10.37570/bgsd-1983-32-01
  • Bernal D, Carlson JK, Goldman KJ, Lowe CG. 2012. Energetics, metabolism, and endothermy in sharks and rays. In: Carrier JC, Musick JA, Heithaus MC, editors. Biology of sharks and their relatives, 2 ed. Boca Raton (Florida): CRC Press; p. 211‒237.
  • Bernal D, Dickson KA, Shadwick RE, Graham JB. 2001. Review: analysis of the evolutionary convergence for high performance swimming in lamnid sharks and tunas. Comp Biochem Physiol. 129(2–3):695–726. doi:10.1016/S1095-6433(01)00333-6
  • Bigelow HB, Schroeder WC. 1948. Fishes of the western North Atlantic, Part I: lancelets, Cyclostomes, Sharks. In: Tee-Van J, Breder CM, Hildebrand SF, Parr AE, Schroeder WC, editors. Fishes of the western North Atlantic. Part 1. New Haven (Connecticut): Sears Foundation for Marine Research. Yale University, New Haven; p. 59–576.
  • Boessenecker RW, Ehret DJ, Long DJ, Churchill M, Martin E, Boessenecker SJ. 2019. The Early Pliocene extinction of the mega-toothed shark Otodus megalodon: a view from the eastern North Pacific. PeerJ. 7:e6088. doi:10.7717/peerj.6088
  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology. 85:1771–1789. doi:10.1890/03-9000
  • Cappetta H. 2012. Chondrichthyes. Mesozoic and Cenozoic Elasmobranchii: teeth. In: Schultze H-P, editor. Handbook of paleoichthyology, volume 3E. Munich: Verlag Dr. Friedrich Pfeil; p. 1‒512.
  • Carey FG, Casey JG, Pratt HL, Urquhart D, McCosker JE. 1985. Temperature, heat production and heat exchange in lamnid sharks. Mem South Calif Acad Sci. 9:92–108.
  • Carey FG, Teal JM. 1969. Mako and porbeagle: warm-bodied sharks. Comp Biochem Physiol. 28(1):199–204. doi:10.1016/0010-406X(69)91335-8
  • Carey FG, Teal JM, Kanwisher JW. 1981. The visceral temperatures of mackerel sharks (Lamnidae). Physiol Zool. 54(3):334–344. doi:10.1086/physzool.54.3.30159948
  • Carman ML, Estes TG, Feinberg AW, Schumacher JF, Wilkerson W, Wilson LH, Callow ME, Callow JA, Brennan AB. 2006. Engineered antifouling microtopographies – correlating wettability with cell attachment. Biofouling. 22(1):11–21. doi:10.1080/08927010500484854
  • Cartamil D, Wegner NC, Aalbers S, Sepulveda CA, Baquero CA, Graham JB. 2010. Diel movement patterns and habitat preferences of the common thresher shark (Alopias vulpinus) in the Southern California Bight. Mar Fr Res. 61:596‒604. doi:10.1071/MF09153
  • Castro JI. 2010. The sharks of North America. New York: Oxford University Press; 640 p.
  • Collareta A, Lambert O, Landini W, Di Celma C, Malinverno E, Varas-Malca R, Urbina M, Bianucci G. 2017. Did the giant extinct shark Carcharocles megalodon target small prey? Bite marks on marine mammal remains from the late Miocene of Peru. Palaeogeography, Palaeoclimatology, Palaeoecology. 469:84–91. doi:10.1016/j.palaeo.2017.01.001
  • Compagno LJV. 2002. Sharks of the world: an annotated and illustrated catalogue of shark species known to date. Volume 2: bullhead, mackerel and carpet sharks (Heterodontiformes, Lamniformes and Orectolobiformes). FAO Sp Cat Fish Purp. 1(2):1–269.
  • Cooper JA, Hutchinson JR, Bernvi DC, Cliff G, Wilson RP, Dicken ML, Menzel J, Wroe S, Pirlo J, Pimiento C. 2022. The extinct shark Otodus megalodon was a transoceanic superpredator: inferences from 3D modeling. Sci Adv. 8(33):9424. doi:10.1126/sciadv.abm9424
  • Cooper JA, Pimiento C, Ferrón HG, Benton MJ. 2020. Body dimensions of the extinct giant shark Otodus megalodon: a 2D reconstruction. Sci Rep. 10:14596. doi:10.1038/s41598-020-71387-y
  • Dean MN, Huber DR, Nance HA. 2006. Functional morphology of jaw trabeculation in the lesser electric ray Narcine brasiliensis, with comments on the evolution of structural support in the Batoidea. J Morphol. 267:1137–1146. doi:10.1002/jmor.10302
  • Dean MN, Mull CG, Gorb SN, Summers AP. 2009. Ontogeny of the tessellated skeleton: insight from the skeletal growth of the round stingray Urobatis halleri. J Anat. 215:227–239. doi:10.1111/j.1469-7580.2009.01116.x
  • Dean MB, Summers AP. 2006. Mineralized cartilage in the skeleton of chondrichthyan fishes. Zoology. 109:164–168. doi:10.1016/j.zool.2006.03.002
  • Dickson K, Graham JB. 2004. Evolution and consequences in endothermy in fshes. Physiol Biochem Zool. 77:998–1018. doi:10.1086/423743
  • Diemer KM, Mann BQ, Hussey NE. 2011. Distribution and movement of scalloped hammerhead Sphryna lewini and smooth hammerhead Sphyrna zygaena sharks along the east coast of Southern Africa. Af J Mar Sci. 33:229–238. doi:10.2989/1814232X.2011.600291
  • Dingerkus G, Séret B, Guilbert E. 1991. Multiple prismatic calcium phosphate layers in the jaws of present-day sharks (Chondrichthyes; Selachii). Experientia. 47:38–40. doi:10.1007/BF02041246
  • Du Clos KT, Lang A, Devey S, Motta PJ, Habegger ML, Gemmell BJ. 2018. Passive bristling of mako shark scales in reversing flows. J Roy Soc Interface. 15:20180473. doi:10.1098/rsif.2018.0473
  • Ebert DA, Dando M, Fowler S. 2021. Sharks of the world: a complete guide. Princeton (New Jersey): Princeton University Press; 607 p.
  • Ehret DJ, MacFadden BJ, Jones DS, Devries TJ, Foster DA, Salas-Gismondi R. 2012. Origin of the white shark Carcharodon (Lamniformes: Lamnidae) based on recalibration of the Upper Neogene Pisco Formation of Peru. Palaeontology. 55:1139‒1153. doi:10.1111/j.1475-4983.2012.01201.x
  • Feichtinger I, Adnet S, Cuny G, Guinot G, Kriwet J, Neubauer TA, Pollerspöck J, Shimada K, Straube N, Underwood C, et al. 2021. Comment on “An early Miocene extinction in pelagic sharks. Science”. 374(6573):0632. doi:10.1126/science.abk0632
  • Ferrón H. 2017. Regional endothermy as a trigger for gigantism in some extinct macropredatory sharks. PLoS ONE. 12:e0185185. doi:10.1371/journal.pone.0185185
  • Ferrón HG, Martínez-Perez C, Botella H. 2017. The evolution of gigantism in active marine predators. Hist Biol. 30:712–716. doi:10.1080/08912963.2017.1319829
  • Filmalter J, Cowley P, Forget F, Dagorn L. 2015. Fine-scale 3-dimensional movement behaviour of silky sharks Carcharhinus falciformis associated with fish aggregating devices (FADs). Mar Ecol Prog Ser. 539:207–223. doi:10.3354/meps11514
  • Frumkin JA, Shimada K. 2020. Integument-based inferences on the swimming ability and prey hunting strategy of the bigeye thresher shark, Alopias superciliosus (Lamniformes: Alopiidae). Zoomorphology. 139:213–229. doi:10.1007/s00435-020-00484-3
  • Gleiss AC, Norman B, Wilson RP. 2011. Moved by that sinking feeling: variable diving geometry underlies movement strategies in whale sharks. Funct Ecol. 25:595–607. doi:10.1111/j.1365-2435.2010.01801.x
  • Gleiss AC, Treberg JT, Byrnes EE, Lear KO. 2022. Physiological and applied energetics of elasmobranch fishes. In: Carrier JC, Simpfendorfer CA, Heithaus MR, Yopak KE, editors. Biology of sharks and their relatives, 3 ed. Boca Raton (Florida): CRC Press; p. 289‒321.
  • Godfrey SJ, Ellwood M, Groff S, Verdin MS. 2018. Carcharocles-bitten odontocete caudal vertebrae from the coastal eastern United States. Acta Palaeont Polo. 63:463–468. doi:10.4202/app.00495.2018
  • Godfrey SJ, Nance JR, Riker NL. 2021. Otodus-bitten sperm whale tooth from the Neogene of the Coastal Eastern United States. Acta Palaeont Polo. 66:599–603. doi:10.4202/app.00820.2020
  • Gorman KL, Shimada K, Witzke BJ. 2014. Late Cretaceous marine fishes from the basal Greenhorn Limestone in western Iowa. Trans Kansas Acad Sci. 117:91–99. doi:10.1660/062.117.0114
  • Gottfried MD, Compagno LJV, Bowman SC. 1996. Size and skeletal anatomy of the giant “megatooth” shark Carcharodon megalodon. In: Klimley AP, Ainley DG, editors. Great white sharks: the biology of Carcharodon carcharias. San Diego: Academic Press; p. 55–66.
  • Griffiths LM, Eagle RA, Kim SL, Flores R, Becker MA, Maisch HM IV, Trayler RB, Chan RL, McCormack J, Akhtara AA, et al. 2023. Endothermic physiology of extinct megatooth sharks. Proc Nat Acad Sci. doi:10.1073/pnas.2218153120
  • Gruber SJ, Dickson KA. 1997. Effects of endurance training in the leopard shark, Triakis semifasciata. Physiol Zool. 70(4):481–492. doi:10.1086/515851
  • Guzzo F, Shimada K. 2018. A new fossil vertebrate locality of the Jetmore Chalk Member of the Upper Cretaceous Greenhorn Limestone in north-central Kansas. U.S.A. Trans Kansas Acad Sci 121:59–68. doi:10.1660/062.121.0206
  • Harding L, Jackson A, Barnett A, Donohue I, Halsey L, Huveneers C, Meyer C, Papastamatiou Y, Semmens JM, Spencer E, et al. 2021. Endothermy makes fishes faster but does not expand their thermal niche. Funct Ecol. 35:1951–1959. doi:10.1111/1365-2435.13869
  • Herraiz JL, Ribé J, Botella H, Martínez-Pérez C, Ferrón HG. 2020. Use of nursery areas by the extinct megatooth shark Otodus megalodon (Chondrichthyes: Lamniformes). Biol Lett. 16:20200746. doi:10.1098/rsbl.2020.0746
  • Hiki Research Group. 1989. The Shiobara-type molluscan fauna from the Tsuchishio Formation (Miocene), northeastern margin of the Kanto Mountains, central Japan. Earth Sci. (Chikyu Kagaku). 43:58–61. doi:10.15080/agcjchikyukagaku.43.1_58
  • Homma T. 1986. Miocene series along the middle part of the River Ara-kawa in the northeastern marginal area of the Kanto Mountains, central Japan (Part 2): sedimentary facies and stratigraphy of the Tsuchishio Formation. Bull Saitama Mus Nat Hist. 4:49–72, 3 plates.
  • Homma T. 1987. Miocene series along the middle part of the River Ara-kawa in the northeastern marginal area of the Kanto Mountains, central Japan (Part 3): sedimentary facies and stratigraphy of the Yagii Formation. Bull Saitama Mus Nat Hist. 5:23–48, 3 plates.
  • Hurst RJ, Baglet NW, McGregor GA, Francis MP. 1999. Movements of the New Zealand school shark, Galeorhinus galeus, from tag returns. New Zealand J Mar Fr Res. 33:29–48. doi:10.1080/00288330.1999.9516854
  • Itoigawa J, Nishimoto N, Karasawa H, Okumura Y. 1985. Miocene fossils of the Mizunami group, central Japan. 3. Elasmobranchs. Monogr Mizunami Fossil Mus. 5:1–99.
  • Jacoby DMP, Siriwat P, Freeman R, Carbone C. 2016. Scaling of swim speed in sharks: a reply to Morrison (2016). Biol Lett. 12:20160502. doi:10.1098/rsbl.2016.0502
  • Kai M, Fujinami Y. 2020. Estimation of mean movement rates for blue sharks in the northwestern Pacific Ocean. Anim Biotelemetry. 8:35. doi:10.1186/s40317-020-00223-x
  • Kast ER, Griffiths ML, Kim SL, Rao ZC, Shimada K, Becker MA, Maisch HM, Eagle RA, Clark CA, Neumann AN, et al. 2022. Cenozoic megatooth sharks occupied extremely high trophic positions. Sci Adv. 8(25):6529. doi:10.1126/sciadv.abl6529
  • Kawano S, Tonomori W, Yoshizawa T. 2022. A pinniped canine from the Miocene Oogane Formation of the Arakawa Group in Nasukarasuyama, Tochigi Prefecture, Japan. Bull Tochigi Pref Mus. 39:1–6.
  • Kent BW. 2018. The cartilaginous fishes (chimaeras, sharks, and rays) of Calvert Cliffs, Maryland, USA. In: Godfrey SJ, editor. The geology and vertebrate paleontology of Calvert Cliffs, Maryland. Washington D.C: Smithsonian Scholarly Press; p. 45–157.
  • Kimura T, Hasegawa Y, Kashiwamura Y. 2014. A fossil mysticete skeleton from the upper Miocene of Tochigi Prefecture, Japan. Bull Gunma Mus Nat Hist. 18:87–100.
  • Kohler NE, Turner PA. 2001. Shark tagging: a review of conventional methods and studies. Environ Biol Fish. 60:191–223. doi:10.1023/A:1007679303082
  • Kurihara Y. 2010. Middle and Late Miocene marine Bivalvia from the northern Kanto region, central Japan. Nat Mus Nature Sci Monogr. 41:1–87.
  • Lang A, Motta P, Hueter R, Habegger M. 2011. Shark skin separation control mechanisms. J Mar Technol Soc. 45:208–215. doi:10.4031/MTSJ.45.4.12
  • Lauder GV, Di Santo V. 2015. Swimming mechanics and energetics of elasmobranch fishes. Fish Physiol. 34:219‒253. doi:10.1016/B978-0-12-801289-5.00006-7
  • Lowe CG. 2001. Metabolic rates of juvenile scalloped hammerhead sharks (Sphyrna lewini). Mar Biol. 139:447–453. doi:10.1007/s002270100585
  • Maisey JG. 2013. The diversity of tessellated calcification in modern and extinct chondrichthyans. Rev Paleobiol. 32:335–371.
  • Maisey JG, Denton JSS, Burrow C, Pradel A. 2021. Architectural and ultrastructural features of tessellated calcified cartilage in modern and extinct chondrichthyan fishes. J Fish Biol. 98:919–941. doi:10.1111/jfb.14376
  • Martin JE, Tacail T, Adnet S, Girard C, Balter V. 2015. Calcium isotopes reveal the trophic position of extant and fossil elasmobranchs. Chem Geol. 415:118–125. doi:10.1016/j.chemgeo.2015.09.011
  • McCormack J, Griffiths ML, Kim SL, Shimada K, Karnes M, Maisch HM IV, Pederzani S, Bourgon N, Jaouen K, Becker MA, et al. 2022. Trophic position of Otodus megalodon and great white sharks through time revealed by zinc isotopes. Nat Comm. 13:2980. doi:10.1038/s41467-022-30528-9
  • McKenzie RW, Motta PJ, Rohr JR. 2014. Comparative squamation of the lateral line canal pores in sharks. J Fish Biol. 84:1300–1311. doi:10.1111/jfb.12353
  • Motta P, Habegger ML, Lang A, Hueter R, Davis J. 2012. Scale morphology and flexibility in the shortfin mako Isurus oxyrinchus and the blacktip shark Carcharhinus limbatus. J Morphol. 273:1096‒1110. doi:10.1002/jmor.20047
  • Naylor GJP, de Lima A, Castro JI, Hubbell G. 2021. Comment on “An early Miocene extinction in pelagic sharks”. Science. 374(6573):8723. doi:10.1126/science.abj8723
  • Nelms A, McIntosh AP, Shimada K. 2014. Fossil fishes from the Jetmore Chalk Member (Lower Turonian) of the Upper Cretaceous Greenhorn Limestone in north-central Kansas. Trans Kansas Acad Sci. 117:245–252. doi:10.1660/062.117.0310
  • Nelson DR, McKibben JN, Strong WR, Lowe CG, Sisneros JA, Schroeder DM, Lavenberg RJ. 1997. An acoustic tracking of a megamouth shark, Megachasma pelagios: a crepuscular vertical migrator. Environ Biol Fish. 49:389‒399. doi:10.1023/A:1007369619576
  • Nishimoto H, Okumura Y, Karasawa H. 1992. Dermal scales of Carcharocles megalodon (Agassiz) from the Miocene Mizunami Group, central Japan—Studies on dermal scales of some elasmobranchian fossils from Japan. Part 1. Bull Mizunami Fossil Mus. 19:269–271.
  • Nowlin WH, Vanni MJ, Yang LH. 2008. Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology. 89:647–659. doi:10.1890/07-0303.1
  • Oliver SP, Turner JR, Gann K, Silvosa M, Jackson TDU. 2013. Thresher sharks use tail-slaps as a hunting strategy. PloS One. 8(7):e67380. doi:10.1371/journal.pone.0067380
  • Pade NG, Queiroz N, Humphries NE, Witt MJ, Jones CS, Noble LR, Sims DW. 2009. First results from satellite-linked archival tagging of porbeagle shark, Lamna nasus: area fidelity, wider-scale movements and plasticity in diel depth changes. J Exp Mar Biol Ecol. 370:64–74. doi:10.1016/j.jembe.2008.12.002
  • Paig-Tran EWM, Porter ME, Ferry LA, Whitenack LB. 2022. How to build a shark: biomechanics and bioinspiration. In: Carrier J, Simpfendorfer C, Heithaus MR, Yopak K, editors Biology of sharks and their relatives. 3 ed. Boca Raton (Florida): CRC Press; p. 59‒103.
  • Parsons G. 1990. Metabolism and swimming efficiency of the bonnethead shark Sphyrna tiburo. Mar Biol. 104:363–367. doi:10.1007/BF01314338
  • Perez VJ, Godfrey SJ, Kent B, Weems R, Nance J. 2019. The transition between Carcharocles chubutensis and Carcharocles megalodon (Otodontidae, Chondrichthyes): lateral cusplet loss through time. J Vert Paleont. 38:6. doi:10.1080/02724634.2018.1546732
  • Perez VJ, Leder RM, Badaut T. 2021. Body length estimation of Neogene macrophagous lamniform sharks (Carcharodon and Otodus) derived from associated fossil dentitions. Palaeontol Electron. 24(1):a09. doi:10.26879/1140
  • Pimiento C, Balk MA. 2015. Body-size trends of the extinct giant shark Carcharocles megalodon: a deep-time perspective on marine apex predators. Paleobiol. 41:479‒490. doi:10.1017/pab.2015.16
  • Pimiento C, Cantalapiedra JL, Shimada K, Field DJ, Smaers JB. 2019. Evolutionary pathways towards shark gigantism. Evolution. 73:588–599. doi:10.1111/evo.13680
  • Popp M, White CF, Bernal D, Wainwright DK, Lauder GV. 2020. The denticle surface of thresher shark tails: three-dimensional structure and comparison to other pelagic species. J Morphol. 281:938–955. doi:10.1002/jmor.21222
  • Purdy RW, Schneider VP, Applegate SP, McLellan JH, Meyer RL, Slaughter BH. 2001. The Neogene sharks, rays, and bony fishes from Lee Creek Mine, Aurora, North Carolina. Smithsonian Contrib Paleobiol. 90:71–202.
  • Raschi W, Elsom J 1986. Comments on the structure and development of the drag reduction-type placoid scale. In: Uyeno T, Arai R, Taniuchi T, Matsuura K, editors. Proceedings of the second international conference on Indo-Pacific fishes. Tokyo: Ichthyological Society of Japan; p. 392–407.
  • Raschi WG, Musick JA. 1986. Hydrodynamic aspects of shark scales. NASA Contract Rep. 3963:1–110.
  • Raschi WG, Tabit C. 1992. Functional aspects of placoid scales: a review and update. Mar Fr Res. 43:123‒147. doi:10.1071/MF9920123
  • Razak H, Kocsis L. 2018. Late Miocene Otodus (Megaselachus) megalodon from Brunei Darussalam: body length estimation and habitat reconstruction. Neues Jahrb Geol Palaontol Abh. 288:299–306. doi:10.1127/njgpa/2018/0743
  • Reif W-E. 1978. Protective and hydrodynamic function of the dermal skeleton of elasmobranchs. Neues Jahrb Geol Paläontol, Abh. 157:133‒141.
  • Reif W-E. 1982. Evolution of dermal skeleton and dentition in vertebrates. Evol Biol. 15:287–368. doi:10.1007/978-1-4615-6968-8_7
  • Reif W-E. 1985a. Functions of scales and photophores in mesopelagic luminescent sharks. Acta Zool. 66:111–118. doi:10.1111/j.1463-6395.1985.tb00829.x
  • Reif W-E. 1985b. Squamation and ecology of sharks. Frankfurt am Main: Courier Forschungsinstitut Senckenberg; 101 p.
  • Reif W-E. 1985c. Morphology and hydrodynamic effects of the scales of fast swimming sharks. Fortschr Zool. 30:483‒485.
  • Reif W-E, Dinkelacker A. 1982. Hydrodynamics of the squamation in fast swimming sharks. Neues Jahrb Geol Paläontol, Abh. 164:184–187. doi:10.1127/njgpa/164/1982/184
  • Rudd JL, Exeter OM, Hall J, Hall J, Hall G, SM H, Kerry C, Witt MJ, Hawkes LA. 2021. High resolution biologging of breaching by the world’s second largest shark species. Sci Rep. 11:5236. doi:10.1038/s41598-021-84670-3
  • Rygg AD, Cox JPL, Abel R, Webb AG, Smith NB, Craven BA. 2013. A computational study of the hydrodynamics in the nasal region of a hammerhead shark (Sphyrna tudes): implications for olfaction. PLoS ONE. 8(3):e59783. doi:10.1371/journal.pone.0059783.
  • Sakamoto K, Uyeno T. 1992. Saitamapsetta nomurai gen. et sp. nov., a righteye flounder from a middle Miocene bed in Saitama Prefecture, Japan. Bull Nat Sci. Mus, Tokyo, Ser. C. 18(3):101–112.
  • Schäfer W. 1972. Ecology and palaeoecology of marine environments (translated by I Oertel; edited by GY Craig). Edinburgh: Oliver and Boyd; 568 p.
  • Schmidt-Nielsen K. 1972. Locomotion: energy cost of swimming, flying, and running. Science. 117:222–228. doi:10.1126/science.177.4045.222
  • Schmidt-Nielsen K. 1984. Scaling: why is animal size so important? New York: Cambridge University Press; 241 p.
  • Schumacher JF, Carman ML, Estes TG, Feinberg AW, Wilson LH, Callow ME, Callow JA, Finlay JA, Brennan AB. 2007. Engineered antifouling microtopographies—effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling. 23:55–62. doi:10.1080/08927010601136957
  • Seidel R, Jayasankar AK, Dean MN. 2021. The multiscale architecture of tessellated cartilage and its relation to function. J Fish Biol. 98:942–955. doi:10.1111/jfb.14444
  • Shimada K. 1997. Skeletal anatomy of the Late Cretaceous lamniform shark, Cretoxyrhina mantelli, from the Niobrara Chalk in Kansas. J Vert Paleontol. 17:642–652. doi:10.1080/02724634.1997.10011014
  • Shimada K. 2006. (date of imprint 2005). Types of tooth sets in the fossil record of sharks, and comments on reconstructing dentitions of extinct sharks. J Fossil Res 38:141–145.
  • Shimada K. 2019. The size of the megatooth shark, Otodus megalodon (Lamniformes: Otodontidae), revisited. Hist Biol. 33(7):904–911. doi:10.1080/08912963.2019.1666840
  • Shimada K, Becker MA, Griffiths ML. 2020. Body, jaw, and dentition lengths of macrophagous lamniform sharks, and body size evolution in Lamniformes with special reference to ‘off-the-scale’ gigantism of the megatooth shark, Otodus megalodon. Hist Biol. 33(11):2543–2559. doi:10.1080/08912963.2020.1812598
  • Shimada K, Bonnan MF, Becker MA, Griffiths ML. 2021. Ontogenetic growth pattern of the extinct megatooth shark Otodus megalodon—implications for its reproductive biology, development, and life expectancy. Hist Biol. 33(12):3254–3259. doi:10.1080/08912963.2020.1861608
  • Shimada K, Chandler RE, Lam OLT, Tanaka T, Ward DJ. 2017. A new elusive otodontid shark (Lamniformes: Otodontidae) from the lower Miocene, and comments on the taxonomy of otodontid genera, including the ‘megatoothed’ clade. Hist Biol. 29(5):704–714. doi:10.1080/08912963.2016.1236795
  • Shimada K, Cicimurri DJ. 2005. Skeletal anatomy of the Late Cretaceous shark, Squalicorax (Neoselachii: Anacoracidae). Palaeontol Z. 79:241–261. doi:10.1007/BF02990187
  • Shimada K, Everhart MJ. 2019. A new large Late Cetaceous lamniform shark from North America with comments on the taxonomy, paleoecology, and evolution of the genus Cretodus. J Vert Paleontol. 39:e1673399. doi:10.1080/02724634.2019.1673399
  • Shimada K, Maisch HM IV, Perez VJ, Becker MA, Griffiths ML. 2022. Revisiting body size trends and nursery areas of the Neogene megatooth shark, Otodus megalodon (Lamniformes: Otodontidae) reveals Bergmann’s rule possibly enhanced its gigantism in cooler waters. Hist Biol. doi:10.1080/08912963.2022.2032024
  • Sibert EC, Rubin LD. 2021. An early Miocene extinction in pelagic sharks. Science. 372:1105–1107. doi:10.1126/science.aaz3549
  • Sims DW. 2000. Filter-feeding and cruising swimming speeds of basking sharks compared with optimal models: they filter-feed slower than predicted for their size. J Exp Mar Biol Ecol. 249:65–76. doi:10.1016/S0022-0981(00)00183-0
  • Sternes PC, Shimada K. 2020. Body forms in sharks (Chondrichthyes: Elasmobranchii), and their functional, ecological, and evolutionary implications. Zoology. 140:125799. doi:10.1016/j.zool.2020.125799
  • Sternes PC, Wood JJ, Shimada K. 2022. Body forms of extant lamniform sharks (Elasmobranchii: Lamniformes), and comments on the morphology of the extinct megatooth shark, Otodus megalodon, and the evolution of lamniform thermophysiology. Hist Biol. doi:10.1080/08912963.2021.2025228
  • Stevens ED, McLeese JM. 1984. Why bluefin tuna have warm tummies: temperature effect on trypsin and chymotrypsin. Am J Physiol. 246:487–494. doi:10.1152/ajpregu.1984.246.4.R487
  • Stone NR, Shimada K. 2019. Skeletal anatomy of the bigeye sandtiger shark, Odontaspis noronhai (Lamniformes: Odontaspididae), and its implications to lamniform phylogeny, taxonomy, and conservation biology. Copeia. 107:632–652. doi:10.1643/CG-18-160
  • Summers AP. 2000. Stiffening the stingray skeleton—an investigation of durophagy in myliobatid stingrays (Chondrichthyes, Batoidea, Myliobatidae). J Morphol. 243:113–126. doi:10.1002/(SICI)1097-4687(200002)243:2<113::AID-JMOR1>3.0.CO;2-A
  • Sundström LF, Gruber SH. 1998. Using speed sensing transmitters to model the bioenergetics of subadult lemon sharks, Negaprion brevirostris (Poey), in the field. Hydrobiologia. 371:241–247. doi:10.1023/A:1017031406947
  • Suto I, Takahashi M, Yanagisawa Y. 2003. Diatom biostratigraphy of the Miocene Tsuchishio Formation in the Hiki Hills area (Aketo Section), Saitama Prefecture, central Japan. J Geol Soc Japan. 109:48–62. doi:10.5575/geosoc.109.48
  • Swinsburg W, Kohler NE, Turner PA, McCandless CT. 2012. Mark/recapture data for the blacktip shark, Carcharhinus limbatus, in the Gulf of Mexico from the NEFSC Cooperative Shark Tagging Program. SEDAR29-WP-16. North Charleston (South Carolina): Southeast Data, Assessment and Review Program, South Atlantic Fishery Management Council; p. 25.
  • Takeda M, Fujiyama I. 1984. A new majid crab from the Miocene Matsuyama Group. Saitama Prefecture, central Japan. Bull Nat Sci Mus, Tokyo, Ser C. 10(2):49–53.
  • Trif N, Ciobanu R, Codrea V. 2016. The first record of the giant shark Otodus megalodon (Agassiz, 1835) from Romania. Brukenthal, Acta Musei. 11:507–526.
  • Uyeno T, Sakamoto O. 1984. Lamnoid shark Carcharodon from Miocene beds of Chichibu Basin, Saitama Prefecture, Japan. Bull Saitama Mus Nat Hist. 2:47–65, 10 plates.
  • Uyeno T, Sakamoto O, Sekine H. 1989. Description of an almost complete tooth set of Carcharodon megalodon from a middle Miocene bed in Saitama Prefecture, Japan. Bull Saitama Mus Nat Hist. 7:73–85, 16 plates.
  • Videler JJ, Nolet BA. 1990. Costs of swimming measured at optimum speed: scale effects, differences between swimming styles, taxonomic groups and submerged and surface swimming. Comp Biochem Physiol. 97:91–99. doi:10.1016/0300-9629(90)90155-L
  • Watanabe YY, Goldman KJ, Caselle JE, Chapman DD, Papastamatiou YP. 2015. Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes. Proc Nat Acad Sci. 112(19):6104–6109. doi:10.1073/pnas.1500316112
  • Yanagisawa Y, Akiba F. 1998. Refined Neogene diatom biostratigraphy for the northwest Pacific around Japan, with introduction of code numbers for selected diatom biohorizons. J. Geol Soc Japan. 104:395–414. doi:10.5575/geosoc.104.395
  • Yanagisawa Y, Ando H. 2020. Neogene Taga and Hitachi groups in the Kitaibaraki-Takahagi area, Ibaraki Prefecture, Japan: sedimentary complexes of shelf to slope deposits, submarine channel fills and submarine slide scar fills, reconstructed from lithostratigraphy and diatom biostratigraphy. Bull Geol Surv Japan. 71:85–199. doi:10.9795/bullgsj.71.85

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.