121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bone microstructure of bony-toothed birds (Odontopterygiformes) from the Eocene of Ikove, Ukraine: preliminary paleobiological implications

Received 09 Feb 2023, Accepted 19 Jun 2023, Published online: 13 Jul 2023

References

  • Adobe Inc. 2012. Digital Negative (DNG) Specification (version 1.4.0.0). [accessed 2023 Feb 9]. https://web.archive.org/web/0/https://www.adobe.com/content/dam/acom/en/products/photoshop/pdfs/dng_spec_1.4.0.0.pdf.
  • Alfonso-Carrillo C, Benavides-Reyes C, de Los Mozos J, Dominguez-Gasca N, Sanchez-Rodríguez E, Garcia-Ruiz AI, Rodriguez-Navarro AB. 2021. Relationship between bone quality, egg production and eggshell quality in laying hens at the end of an extended production cycle (105 weeks). Animals. 11(3):623. doi: 10.3390/ani11030623.
  • Angst D, Chinsamy A, Steel L, Hume JP. 2017. Bone histology sheds new light on the ecology of the dodo (Raphus cucullatus, Aves, Columbiformes). Sci Rep. 7(1):7993. doi: 10.1038/s41598-017-08536-3.
  • Atterholt J, Woodward HN. 2021. A histological survey of avian post-natal skeletal ontogeny. PeerJ. 9:e12160. doi: 10.7717/peerj.12160.
  • Bailleul AM, O’Connor J, Schweitzer MH. 2019. Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ. 7:e7764. doi:10.7717/peerj.7764.
  • Benavides-Reyes C, Rodriguez-Navarro AB, McCormack HA, Eusemann BK, Dominguez-Gasca N, Alvarez-Lloret P, Fleming RH, Petow S, Dunn IC. 2021. Comparative analysis of the morphology, chemistry and structure of the tibiotarsus, humerus and keel bones in laying hens. Br Poult Sci. 62(6):795–803. doi: 10.1080/00071668.2021.1943310.
  • Bloom MA, Domm LV, Nalbandov AV, Bloom W. 1958. Medullary bone of laying chickens. Am J Anat. 102(3):411–453. doi: 10.1002/aja.1001020304.
  • Boessenecker RW, Smith NA. 2011. Latest Pacific Basin record of a bony-toothed bird (Aves, Pelagornithidae) from the Pliocene Purisima Formation of California, U.S.A. J Vertebr Paleontol. 31(3):652–657. doi: 10.1080/02724634.2011.562268.
  • Bourdon E. 2005. Osteological evidence for sister group relationship between pseudo-toothed birds (Aves: Odontopterygiformes) and waterfowls (Anseriformes). Naturwissenschaften. 92(12):586–591. doi: 10.1007/s00114-005-0047-0.
  • Bourdon E. 2011. The Pseudo-toothed birds (Aves, Odontopterygiformes) and their bearing on the early evolution of modern birds. In: Dyke G, Kaiser G, editors. Living Dinosaurs: the Evolutionary History of Modern Birds. Chichester: Wiley-Blackwell; p. 209–234.
  • Bourdon E, Amaghzaz M, Bouya B. 2010. Pseudotoothed birds (Aves, Odontopterygiformes) from the early Tertiary of Morocco. Am Mus Novit. 3704(3704):1–72. doi: 10.1206/3704.2.
  • Bourdon E, Castanet J, de Ricqles A, Scofield P, Tennyson A, Lamrous H, Cubo J. 2009. Bone growth marks reveal protracted growth in New Zealand kiwi (Aves, Apterygidae). Biol Lett. 5(5):639–642. doi: 10.1098/rsbl.2009.0310.
  • Bromage TG, Goldman HM, McFarlin SC, Warshaw J, Boyde A, Riggs CM. 2003. Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat Rec. 274B(1):157–168. doi: 10.1002/ar.b.10031.
  • Cambra-Moo O, Buscalioni ÁD, Cubo J, Castanet J, Loth MM, de Margerie E, de Ricqlès A. 2006. Histological observations of Enantiornithine bone (Saurischia, Aves) from the Lower Cretaceous of Las Hoyas (Spain). C R Palevol. 5(5):685–691. doi: 10.1016/j.crpv.2005.12.018.
  • Canoville A, Chinsamy A, Angst D. 2022. New comparative data on the long bone microstructure of large extant and extinct flightless birds. Diversity. 14(4):298. doi: 10.3390/d14040298.
  • Canoville A, Laurin M. 2010. Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on palaeobiological inferences. Biol J Linn Soc. 100(2):384–406. doi: 10.1111/j.1095-8312.2010.01431.x.
  • Castanet J, Curry Rogers K, Cubo J, Jacques-Boisard J. 2000. Periosteal bone growth rates in extant ratites (ostriche and emu). Implications for assessing growth in dinosaurs. C R Acad Sci. 323(6):543–550. doi: 10.1016/S0764-4469(00)00181-5.
  • Cenizo M, Acosta Hospitaleche C, Reguero M. 2015. Diversity of pseudo-toothed birds (Pelagornithidae) from the Eocene of Antarctica. J Paleo. 89(5):870–881. doi: 10.1017/jpa.2015.48.
  • Cerda IA, Tambussi CP, Degrange FJ. 2014. Unexpected microanatomical variation among Eocene Antarctic stem penguins (Aves: Sphenisciformes). Hist Biol. 27(5):549–557. doi: 10.1080/08912963.2014.896907.
  • Chapelle KE, Barrett PM, Choiniere JN, Botha J. 2022. Interelemental osteohistological variation in Massospondylus carinatus and its implications for locomotion. PeerJ. 10:e13918. doi: 10.7717/peerj.13918.
  • Chinsamy A. 1990. Physiological implications of the bone histology of Syntarsus rhodesiensis (Saurischia: Theropoda). Palaeont Afr. 27:77–82.
  • Chinsamy A. 1995. Ontogenetic changes in the bone histology of the Late Jurassic ornithopod Dryosaurus lettowvorbecki. J Vert Paleont. 15(1):96–104. doi: 10.1080/02724634.1995.10011209.
  • Chinsamy A, Chiappe LM, Dodson P. 1995. Mesozoic avian bone microstructure: physiological implications. Paleobiology. 21(4):561–574. doi: 10.1017/S0094837300013543.
  • Chinsamy A, Martin LD, Dodson P. 1998. Bone microstructure of the diving Hesperornis and the volant Ichthyornis from the Niobrara Chalk of western Kansas. Cret Res. 19(2):225–235. doi: 10.1006/cres.1997.0102.
  • Chinsamy A, Marugán‐Lobón J, Serrano FJ, Chiappe L. 2020. Osteohistology and life history of the basal pygostylian, Confuciusornis sanctus. Anat Rec. 303(4):949–962. doi: 10.1002/ar.24282.
  • Chinsamy A, Worthy TH. 2021. Histovariability and palaeobiological implications of the bone histology of the dromornithid, Genyornis newtoni. Diversity. 13(5):219. doi: 10.3390/d13050219.
  • Coffin D. 2018. Decoding raw digital photos in Linux. [2023 Feb 9]. https://www.dechifro.org/dcraw.
  • Cubo J, Le Roy N, Martinez-Maza C, Montes L. 2012. Paleohistological estimation of bone growth rate in extinct archosaurs. Paleobiology. 38(2):335–349. doi: 10.1666/08093.1.
  • Currey J. 2003. The many adaptations of bone. J Biomech. 36(10):1487–1495. doi: 10.1016/S0021-9290(03)00124-6.
  • Dabee VP. 2013. Comparison of the long bone microstructure of two southern African marine birds, the Cape gannet (Morus capensis) and the African penguin (Spheniscus demersus) with respect to their aquatic adaptations [ dissertation]. Cape Town: University of Cape Town.
  • De Buffrénil V, Quilhac A. 2021a. Bone tissue types: a brief account of currently used categories. In: de Buffrénil V, de Ricqlès AJ, Zylberberg L, Padian K, editors. Vertebrate skeletal histology and paleohistology. Boca Raton and London: CRC Press; p. 147–182.
  • De Buffrénil V, Quilhac A. 2021b. Bone Remodeling. In: de Buffrénil V, de Ricqlès AJ, Zylberberg L, Padian K, editors. Vertebrate skeletal histology and paleohistology. Boca Raton and London: CRC Press; p. 229–246.
  • De Buffrénil V, Quilhac A, Castanet J. 2021b. Cyclical growth and skeletochronology. In: de Buffrénil V, de Ricqlès AJ, Zylberberg L, Padian K, editors. Vertebrate skeletal histology and paleohistology. Boca Raton and London: CRC Press; p. 626–644.
  • De Buffrénil V, Quilhac A, Cubo J. 2021a. Accretion rate and histological features of bone. In: de Buffrénil V, de Ricqlès AJ, Zylberberg L, Padian K, editors. Vertebrate skeletal histology and paleohistology. Boca Raton and London: CRC Press; p. 221–228.
  • De Margerie E. 2006. Fonction biomécanique des microstructures osseuses chez les oiseaux. C R Palevol. 5(3–4):619–628. doi: 10.1016/j.crpv.2005.09.025.
  • De Margerie E, Cubo J, Castanet J. 2002. Bone typology and growth rate: testing and quantifying ‘Amprino’s rule’ in the mallard (Anas platyrhynchos). C R Biol. 325(3):221–230. doi: 10.1016/S1631-0691(02)01429-4.
  • De Margerie E, Sanchez S, Cubo J, Castanet J. 2005. Torsional resistance as a principal component of the structural design of long bones: comparative multivariate evidence in birds. Anat Rec. 282A:49–66. doi:10.1002/ar.a.20141.
  • De Ricqlès AJ. 2021. Paleohistology: an historical – bibliographical introduction. In: de Buffrénil V, de Ricqlès AJ, Zylberberg L, Padian K, editors. Vertebrate skeletal histology and paleohistology. Boca Raton and London: CRC Press; p. 3–28. doi:10.1201/9781351189590-1.
  • De Ricqlès A, Bourdon E, Legendre LJ, Cubo J. 2016. Preliminary assessment of bone histology in the extinct elephant bird Aepyornis (Aves, Palaeognathae) from Madagascar. C R Palevol. 15(1–2):197–208. doi: 10.1016/j.crpv.2015.01.003.
  • De Ricqlès AJ, Padian K, Horner JR, Lamm ET, Myhrvold N. 2003. Osteohistology of Confuciusornis sanctus (Theropoda: Aves). J Vert Paleont. 23(2):373–386. doi:10.1671/0272-4634(2003)023[0373:OOCSTA]2.0.CO;2.
  • Dernov VS, Udovichenko NI. 2020. Ихнофоссилии местонахождения остатков эоценовых позвоночных «Иково» (Луганская область) [Trace fossils from locality of Eocene vertebrates «Ikovo» (Lugansk region)]. In: Peresadko VA, Matveev AV, Vysochansky IV et al., editors. Latest problems of geology: materials of scientific and practical conference in memoriam to V. P. Makrydin; Jun 02–04; Kharkiv. V. N. Karazin Kharkiv National University; p. 19–21. Russian.
  • Dernov V, Udovychenko M. 2023. Іхнофосилії з відкладів бучацької світи (лютецький ярус, еоцен) Луганщини та їхнє палеогеографічне значення [Trace fossils from the Buchak Formation (Lutetian, Eocene) of Luhansk Oblast, Ukraine, and their palaeogeographic significance]. GEO&BIO. 24. Ukrainian. https://doi.org/10.15407/gb2408.
  • Dobrovolsky SE. 2023. Preparation of ground sections using UV-curable acrylic adhesives. Biosyst Divers. 31(1):34–53. doi:10.15421/012305.
  • Drozdowska J, Meissner W. 2014. Changes in endosteal cell layer number of long bones are not appropriate for ageing birds: evidence from Baltic razorbills (Alca torda Linnaeus, 1758). Zool Anz. 253(6):493–496. doi: 10.1016/j.jcz.2014.07.001.
  • Egiazarian K, Katkovnik V, Astola J, Foi A, Paliy D, Dabov K. 2016. Color Filter Array Interpolation based on LPA-ICI. The LASIP project; [2023 Feb 9], Tampere University of Technology. https://webpages.tuni.fi/lasip/cfai.
  • Erickson GM. 2005. Assessing dinosaur growth patterns: a microscopic revolution. Trends Ecol Evol. 20(12):677–684. doi: 10.1016/j.tree.2005.08.012.
  • Fernández-Jalvo Y, Andrews P. 2016. Atlas of Taphonomic Identifications. Dordrecht: Springer Netherlands. doi: 10.1007/978-94-017-7432-1.
  • Francillon-Vieillot H, de Buffrénil V, Castanet J, Géraudie J, Meunier FJ, Sire JY, Zylberberg L, de Ricqlès A. 1990. Microstructure and mineralization of vertebrate skeletal tissues. In: Carter JG, editor. Skeletal Biomineralization: patterns, Processes and Evolutionary Trends, Vol. 1. New York: Van Nostrand Reinhold; p. 471–530.
  • Hedges REM, Millard AR, Pike AWG. 1995. Measurements and relationships of diagenetic alteration of bone from three archaeological sites. J Archaeol Sci. 22(2):201–209. doi: 10.1006/jasc.1995.0022.
  • Horner JR, Padian K, de Ricqlès A. 2001. Comparative osteohistology of some embryonic and perinatal archosaurs: developmental and behavioral implications for dinosaurs. Paleobiology. 27(1):39–58. doi:10.1666/0094-8373(2001)027<0039:COOSEA>2.0.CO;2.
  • Houde P. 1987. Histological evidence for the systematic position of Hesperornis (Odontornithes: Hesperornithiformes). The Auk. 104(1):125–129. doi: 10.2307/4087243.
  • Howard H. 1957. A gigantic “toothed” marine bird from the Miocene of California. Bulletin of the Department of Geology of the Santa Barbara Museum of Natural History. 1:1–23.
  • Howard H, White JA. 1962. A second record of Osteodontornis, Miocene “toothed” bird. Los Angeles County Museum Contributions in Science. 52:1–12. doi: 10.5962/p.241047.
  • Jasinoski SC, Chinsamy-Turan A. 2012. Biological inferences of the cranial microstructure of the dicynodonts Oudenodon and Lystrosaurus. In: Chinsamy-Turan A, editor. Forerunners of Mammals. Bloomington and Indianapolis: Indiana University Press; p. 149–178.
  • Klevezal GA, Smirina EM. 2016. Регистрирующие структуры наземных позвоночных. Краткая история и современное состояние исследований [Registering structures of terrestrial vertebrates. Brief history and modern state of knowledge]. Zoologicheskiy Zhurnal. 95(8):872–896. Russian. doi: 10.7868/S0044513416080079.
  • Kuehn AL, Lee AH, Main RP, Simons ELR. 2019. The effects of growth rate and biomechanical loading on bone laminarity within the emu skeleton. PeerJ. 7:e7616. doi: 10.7717/peerj.7616.
  • Lanyon LE, Rubin CT. 1984. Static vs dynamic loads as an influence on bone remodelling. J Biomech. 17(12):897–905. doi: 10.1016/0021-9290(84)90003-4.
  • Lee AH, Simons ELR. 2015. Wing bone laminarity is not an adaptation for torsional resistance in bats. PeerJ. 3:e823. doi: 10.7717/peerj.823.
  • Legendre LJ, Bourdon E, Scofield RP, Tennyson AJD, Lamrous H, de Ricqlès A, Cubo J. 2014. Bone histology, phylogeny, and palaeognathous birds (Aves: Palaeognathae). Biol J Linn Soc. 112(4):688–700. doi: 10.1111/bij.12312.
  • Louchart A, Buffrénil V, Bourdon E, Dumont M, Viriot L, Sire JY. 2018. Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed through a response of bone cells to tooth-specific epithelial signals under unique conditions. Sci Rep. 8(1):12952. doi: 10.1038/s41598-018-31022-3.
  • Louchart A, Sire JY, Mourer-Chauviré C, Geraads D, Viriot L, de Buffrénil V. 2013. Structure and growth pattern of pseudoteeth in Pelagornis mauretanicus (Aves, Odontopterygiformes, Pelagornithidae). PLoS One. 8(11):e80372. doi:10.1371/journal.pone.0080372.
  • Mayr G. 2011. Cenozoic mystery birds – on the phylogenetic affinities of bony-toothed birds (Pelagornithidae). Zool Scr. 40(5):448–467. doi: 10.1111/j.1463-6409.2011.00484.x.
  • Mayr G. 2017. Avian Evolution. Chichester: John Wiley & Sons Ltd. doi:10.1002/9781119020677.
  • Mayr G, De Pietri VL, Love L, Mannering A, Scofield RP. 2019. Oldest, smallest and phylogenetically most basal pelagornithid, from the early Paleocene of New Zealand, sheds light on the evolutionary history of the largest flying birds. Pap Palaeontol. 7(1):217–233. doi: 10.1002/spp2.1284.
  • Mayr G, Zvonok E. 2012. A new genus and species of Pelagornithidae with well-preserved pseudodentition and further avian remains from the middle Eocene of the Ukraine. J Vertebr Paleontol. 32(4):914–925. doi: 10.1080/02724634.2012.676114.
  • McFarlin SC, Terranova CJ, Zihlman AL, Enlow DH, Bromage TG. 2008. Regional variability in secondary remodeling within long bone cortices of catarrhine primates: the influence of bone growth history. J Anat. 213(3):308–324. doi: 10.1111/j.1469-7580.2008.00947.x.
  • Meister W. 1951. Changes in histological structure of the long bones of birds during the molt. Anat Rec. 3(1):1–21. doi: 10.1002/ar.1091110102.
  • Mlíkovský J. 2009. Evolution of the Cenozoic marine avifaunas of Europe. Annalen des Naturhistorischen Museums in Wien. 111A:357–374.
  • Monfroy QT, Kundrát M. 2021. The osteohistological variability in the evolution of basal avialans. Acta Zool. 103(1):1–28. doi: 10.1111/azo.12396.
  • Newman S, Leeson S. 1999. The effect of feed deprivation and subsequent refeeding on the bone characteristics of aged hens. Poult Sci. 78(12):1658–1663. doi: 10.1093/ps/78.12.1658.
  • Owen R. 1873. Description of the Skull of a Dentigerous Bird (Odontopteryx toliapicus, Ow.) from the London Clay of Sheppey. J Geol Soc. 29(1–2):511–522. doi: 10.1144/GSL.JGS.1873.029.01-02.45.
  • Padian K. 2013. Why study the bone microstructure of fossil tetrapods? In: Padian K, Lamm ET, editors. Bone Histology of Fossil Tetrapods. Berkeley: University of California Press; p. 1–11. doi:10.1525/california/9780520273528.003.0001.
  • Padian K, Woodward HN. 2021. Archosauromorpha: Avemetatarsalia – dinosaurs and their relatives. In: de Buffrénil V, de Ricqlès AJ, Zylberberg L, Padian K, editors. Vertebrate Skeletal Histology and Paleohistology. Boca Raton and London: CRC Press; p. 511–549. doi:10.1201/9781351189590-27.
  • Ponton F, Elżanowski A, Castanet J, Chinsamy A, Margerie ED, Ricqlès AD, Cubo J. 2004. Variation of the outer circumferential layer in the limb bones of birds. Acta Ornithol. 39(2):137–140. doi: 10.3161/068.039.0210.
  • Pratt IV, Cooper DML. 2018. The effect of growth rate on the three-dimensional orientation of vascular canals in the cortical bone of broiler chickens. J Anat. 233(4):531–541. doi: 10.1111/joa.12847.
  • Pratt IV, Johnston JD, Walker E, Cooper DML. 2018. Interpreting the three-dimensional orientation of vascular canals and cross-sectional geometry of cortical bone in birds and bats. J Anat. 232(6):931–942. doi: 10.1111/joa.12803.
  • Prondvai E, Stein KHW, de Ricqlès A, Cubo J. 2014. Development-based revision of bone tissue classification: the importance of semantics for science. Biol J Linn. 112(4):799–816. doi: 10.1111/bij.12323.
  • Prondvai E, Witten PE, Abourachid A, Huysseune A, Adriaens D. 2019. Extensive chondroid bone in juvenile duck limbs hints at accelerated growth mechanism in avian skeletogenesis. J Anat. 236(3):463–473. doi: 10.1111/joa.13109.
  • Rubin CT, Lanyon LE. 1984. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 66-A(3):397–402.
  • Simons ELR, O’Connor PM. 2012. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations. Anat Rec. 295(3):386–396. doi: 10.1002/ar.22402.
  • Skedros JG, Holmes JL, Vajda EG, Bloebaum RD. 2005. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. Anat Rec A Discov Mol Cell Evol Biol. 286A(1):781–803. doi: 10.1002/ar.a.20214.
  • Skedros JG, Hunt KJ. 2004. Does the degree of laminarity correlate with site-specific differences in collagen fibre orientation in primary bone? An evaluation in the turkey ulna diaphysis. J Anat. 205(2):121–134. doi: 10.1111/j.0021-8782.2004.00318.x.
  • Smith NA, Clarke JA. 2013. Osteological histology of the Pan-Alcidae (Aves, Charadriiformes): correlates of wing-propelled diving and flightlessness. Anat Rec. 297(2):188–199. doi: 10.1002/ar.22841.
  • Starck JM, Chinsamy A. 2002. Bone microstructure and developmental plasticity in birds and other dinosaurs. J Morphol. 254(3):232–246. doi: 10.1002/jmor.10029.
  • Stein K, Prondvai E. 2014. Rethinking the nature of fibrolamellar bone: an integrative biological revision of sauropod plexiform bone formation. Biol Rev. 89(1):24–47. doi: 10.1111/brv.12041.
  • Straehl FR, Scheyer TM, Forasiepi AM, MacPhee RD, Sánchez-Villagra MR. 2013. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones. PLoS ONE. 8(7):e69275. doi: 10.1371/journal.pone.0069275.
  • Trueman CN, Martill DM. 2002. The long-term survival of bone: the role of bioerosion. Archaeometry. 44(3):371–382. doi: 10.1111/1475-4754.t01-1-00070.
  • Turner-Walker G. 2019. Light at the end of the tunnels? The origins of microbial bioerosion in mineralised collagen. Palaeogeogr Palaeoclimatol Palaeoecol. 529:24–38. doi: 10.1016/j.palaeo.2019.05.020.
  • Tütken T, Pfretzschner H-U, Vennemann TW, Sun G, Wang YD. 2004. Paleobiology and skeletochronology of Jurassic dinosaurs: implications from the histology and oxygen isotope compositions of bones. Palaeogeogr Palaeoclimatol Palaeoecol. 206(3–4):217–238. doi: 10.1016/j.palaeo.2004.01.005.
  • Udovichenko NI. 2009. Ихтиофауна и возраст палеогеновых песков в районе с. Осиново (Луганская Область) [Ichthyofauna and age of the Paleogene sands of Osinove area, Lugansk region]. In: Gozhyk PF, editor. Fossil fauna and flora of Ukraine: paleoecological and stratigraphic aspects. Collection of Scientific Works of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine. Kyiv: Institute of Geological Sciences of the National Academy of Sciences of Ukraine; p. 255–261. Russian.
  • Udovichenko NI, Zvonok EA. 2011. О новом местонахождении палеогеновых позвоночных в Украине [About the new locality of Paleogene vertebrates in Ukraine]. In: Yemelianov IG, Shnukov EF, Gozhyk PF, Ponomarenko OM, Patalakha GB, Mikhaylov VA, Shumliansky VO, Derevska KI, editors. Geological monuments – a prominent evidence of the evolution of Earth. Materials of the II International Scientific and Practical Conference; May 16–20, Kamianets-Podilskyi. Kyiv: Logos; p.128–130. Russian.
  • Warshaw J, Bromage TG, Terranova CJ, Enlow DH. 2017. Collagen fiber orientation in primate long bones. Anat Rec. 300(7):1189–1207. doi: 10.1002/ar.23571.
  • Whitehead CC. 2004. Overview of bone biology in the egg-laying hen. Poult Sci. 83(2):193–199. doi: 10.1093/ps/83.2.193.
  • Wisshak M. 2006. High-Latitude Bioerosion: the Kosterfjord Experiment. Lecture Notes in Earth Sciences. Berlin (Heidelberg): Springer. doi:10.1007/978-3-540-36849-6.
  • Zelenkov NV, Kurochkin EN. 2015. Класс Aves [Class Aves]. In: Kurochkin EN, Lopatin AV, Zelenkov NV, editors. Fossil vertebrates of Russia and adjacent countries. Fossil reptiles and birds. Part 3. Moscow: GEOS; p. 86–290. Russian.
  • Zhao SC, Teng XQ, Xu DL, Chi X, Ge M, Xu SW. 2020. Influences of low level of dietary calcium on bone characters in laying hens. Poult Sci. 99(12):7084–7091. doi: 10.1016/j.psj.2020.08.057.
  • Zvonok E. 2011. Нові дані про місцезнаходження й таксономічне розмаїття еоценових крокодилів і черепах України [New data on the location and taxonomic diversity of Eocene crocodiles and turtles of Ukraine]. Paleontological review. 43:107–120. Ukrainian.
  • Zvonok E 2013. Эоценовые тетраподы Украины: стратиграфическое и палеогеографическое значение [Eocene tetrapods of Ukraine: stratigraphic and paleogeographic significance] [ dissertation]. Kyiv: Institute of Geological Sciences of the National Academy of Sciences. Russian.
  • Zvonok E, Mayr G, Gorobets L. 2015. New material of the Eocene marine bird Kievornis Averianov et al., 1990 and a reassessment of the affinities of this taxon. Vert PalAs. 53(3):238–244.
  • Zvonok E, Udovichenko M, Bratishko A. 2012. Місцезнаходження еоценових хребетних Ікове (Луганська область, Україна): еколого-тафономічний аналіз [Location of Eocene vertebrates Ikove (Luhansk region, Ukraine): ecological and taphonomic analysis]. Paleontological review. 44:107–122. Ukrainian.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.