79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Actualistic approach to the chemical preservation potential and its influence on the Caenogastropoda biodiversity

ORCID Icon, & ORCID Icon
Received 28 Feb 2023, Accepted 27 Jun 2023, Published online: 06 Jul 2023

References

  • Aitken AE. 1990. Fossilization potential of Arctic fjord and continental shelf benthic macrofaunas. Geological Society, London, Special Publications. 53(1):155–176. doi:10.1144/GSL.SP.1990.053.01.09.
  • Atkins P, Paula J. 2017. Físico-química - Volume 2. 10a edição ed. Rio de Janeiro: LTC.
  • Bandel K. 1991. Shell structure of the gastropoda excluding archaeogastrofioda. In: Carter JG, editor. Skeletal biomineralization: patterns, processes, and evolutionary trends. 1st ed. Vol. 2. New York: Springer US; p. 117–134.
  • Bath Enright OG, Minter NJ, Sumner EJ. 2017. Palaeoecological implications of the preservation potential of soft-bodied organisms in sediment-density flows: testing turbulent waters. Royal Society Open Science. 4(6):170212. doi:10.1098/rsos.170212.
  • Bazin M, Purohit NK, Merlin MA, Shah GM. 2020. A panel of criteria for comprehensive assessment of severity of ultraviolet B radiation-induced non-melanoma skin cancers in SKH-1 mice. J Photochem Photobiol B. 205:111847. doi:10.1016/j.jphotobiol.2020.111847
  • Bednaršek N, Naish K-A, Feely RA, Hauri C, Kimoto K, Hermann AJ, Michel C, Niemi A, Pilcher D. 2021. Integrated assessment of ocean acidification risks to pteropods in the northern high latitudes: regional comparison of exposure, sensitivity and adaptive capacity. Front Mar Sci. 8. doi:10.3389/fmars.2021.671497
  • Behrensmeyer AK, Fürsich FT, Gastaldo RA, Kidwell SM, Kosnik MA, Kowalewski M, Plotnick RE, Rogers RR, Alroy J. 2005. Are the most durable shelly taxa also the most common in the marine fossil record? Paleobiology. 31(4):607–623. doi:10.1666/04023.1.
  • Behrensmeyer AK, Kidwell SM. 1985. Taphonomy’s Contributions to Paleobiology. Paleobiology. 11(1):105–119. doi:10.1017/S009483730001143X.
  • Best MMR, Kidwell SM. 2000. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. I. Environmental variation in shell condition. Paleobiology. 26(1):80–102. doi:10.1666/0094-8373(2000)026.
  • Blinkova EV, Eliseev EI. 2005. Dissolution of Calcium Carbonate in Aqueous Solutions of Acetic Acid. Russ J Appl Chem. 78(7):1064–1066. doi:10.1007/s11167-005-0450-5.
  • Boggild OB. 1930. The shell structure of the mollusks. Kjobenhavn: A.F. Host.
  • Briggs DEG. 1995. Experimental taphonomy. PALAIOS. 10(6):539–550. doi:10.2307/3515093.
  • Briggs DEG, Kear AJ. 1993. Decay and preservation of polychaetes: taphonomic thresholds in soft-bodied organisms. Paleobiology. 19(1):107–135. doi:10.1017/S0094837300012343.
  • Butterfield NJ. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology. 16(3):272–286. doi:10.1017/S0094837300009994.
  • Caldeira K, Wickett ME. 2003. Anthropogenic carbon and ocean pH. Nature. 425(6956):365. doi:10.1038/425365a.
  • Caldeira K, Wickett ME. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res Oceans [Internet]. 110. doi:10.1029/2004JC002671
  • Campbell ID. 1999. Quaternary pollen taphonomy: examples of differential redeposition and differential preservation. Palaeogeogr Palaeoclimatol Palaeoecol. 149(1–4):245–256. doi:10.1016/S0031-0182(98)00204-1.
  • Checa AG. 2018. Physical and biological determinants of the fabrication of molluscan shell microstructures. Front Mar Sci. 5:353. doi:10.3389/fmars.2018.00353
  • Claremont M, Vermeij GJ, Williams ST, Reid DG. 2013. Global phylogeny and new classification of the rapaninae (Gastropoda: Muricidae), dominant molluscan predators on tropical rocky seashores. Mol Phylogenet Evol. 66(1):91–102. doi:10.1016/j.ympev.2012.09.014.
  • Clements JC, Coffin MRS, Lavaud R, Guyondet T, Comeau L. 2018. Ocean acidification and molluscan shell taphonomy: can elevated seawater pCO2 influence taphonomy in a naticid predator–prey system? Palaeogeogr Palaeoclimatol Palaeoecol. 507:145–154. doi:10.1016/j.palaeo.2018.07.007
  • Couto DR, Bouchet P, Kantor YI, Simone LRL, Giribet G. 2016. A multilocus molecular phylogeny of fasciolariidae (Neogastropoda: Buccinoidea). Mol Phylogenet Evol. 99:309–322. doi:10.1016/j.ympev.2016.03.025
  • Cristini PA, Frontini PM, Ballarre J. 2021. Shell strength of freshwater molluscs and its implication on preservation potential. Hist Biol. 33(11):2668–2682. doi:10.1080/08912963.2020.1822355.
  • Cubillas P, Köhler S, Prieto M, Chaïrat C, Oelkers EH. 2005. Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chem Geol. 216(1):59–77. doi:10.1016/j.chemgeo.2004.11.009.
  • Davies DJ, Powell EN, Stanton RJ. 1989. Taphonomic signature as a function of environmental process: shells and shell beds in a hurricane-influenced inlet on the Texas coast. Palaeogeogr Palaeoclimatol Palaeoecol. 72:317–356. doi:10.1016/0031-0182(89)90150-8
  • Du M, Li H, Tan J, Wang Z, Wang W. 2023. The bias types and drivers of the furongian biodiversity gap. Palaeogeogr Palaeoclimatol Palaeoecol. 612:111394. doi:10.1016/j.palaeo.2023.111394
  • Dutta A, Vanderklok A, Tekalur SA. 2012. High strain rate mechanical behavior of seashell-mimetic composites: analytical model formulation and validation. Mechanics of Materials. 55:102–111. doi:10.1016/j.mechmat.2012.08.003
  • Erthal F, Kotzian CB, Simões MG. 2011. Fidelity of molluscan assemblages from the Touro passo formation (Pleistocene–Holocene), southern Brazil: taphonomy as a tool for discovering natural baselines for freshwater communities. PALAIOS. 26(7):433–446. doi:10.2110/palo.2010.p10-145r.
  • Erthal F, Kotzian CB, Simões MG. 2015. Multistep taphonomic alterations in fluvial mollusk shells: a case study in the Touro passo formation (Pleistocene–holocene. Southern Brazil Palaios. 30(5):388–402. doi:10.2110/palo.2013.104.
  • Erthal F, Ritter MN, Kotzian CB. 2017. Assinaturas tafonômicas em moluscos recentes e seu significado paleoambiental. Terrae Didatica. 13(1):5–30. doi:10.20396/td.v13i1.8648624.
  • Findlay HS, Wood HL, Kendall MA, Spicer JI, Twitchett RJ, Widdicombe S. 2011. Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms. Mar Biol Res. 7(6):565–575. doi:10.1080/17451000.2010.547200.
  • Flessa KW, Brown TJ. 1983. Selective solution of macroinvertebrate calcareous hard parts: a laboratory study. Lethaia. 16(3):193–205. doi:10.1111/j.1502-3931.1983.tb00654.x.
  • Fryda J. 1999. Higher classification of Paleozoic gastropods inferred from their early shell ontogeny. J Geosci. 44(1–2):137–154.
  • Gabriel JM. 1981. Differing resistance of various mollusc shell materials to simulated whelk attack. J Zool. 194(3):363–369. doi:10.1111/j.1469-7998.1981.tb04587.x.
  • Garvie CL. 1992. A second cretaceous muricid from the gulf coastal plain. Tulane studies in geology and paleontology. Tulane Studies in Geology and Paleontology. [Internet]. 25(4):187–190. https://journals.tulane.edu/tsgp/article/view/849
  • Génio L, Kiel S, Cunha MR, Grahame J, Little CTS. 2012. Shell microstructures of mussels (Bivalvia: Mytilidae: Bathymodiolinae) from deep-sea chemosynthetic sites: do they have a phylogenetic significance? deep sea research part I. Oceanogr Res Pap. 64:86–103. doi:10.1016/j.dsr.2012.02.002
  • Glover CP, Kidwell SM. 1993. Influence of Organic Matrix on the Post-Mortem Destruction of Molluscan Shells. J Geol. 101(6):729–747.
  • Guthrie RD. 1967. Differential preservation and recovery of Pleistocene large mammal remains in Alaska. J Paleontol. 41(1):243–246.
  • Hare PE, Abelson PH. 1965. Amino acid composition of some calcified proteins. In: year book 64 - Carnegie institution of Washington [internet]. Washington (D.C): Carnegie Institution of Washington; p. 223–232. http://archive.org/details/yearbookcarne64196465carn .
  • Harper EM. 2000. Are calcitic layers an effective adaptation against shell dissolution in the Bivalvia? J Zool. 251:179–186. doi:10.1111/j.1469-7998.2000.tb00602.x
  • Harper EM, Crame JA, Pullen AM. 2019. The fossil record of durophagous predation in the James Ross Basin over the last 125 million years. Adv Polar Sci. 30(3):199–209. doi:10.13679/j.advps.2019.0001.
  • Henrich R, Wefer G. 1986. Dissolution of biogenic carbonates: effects of skeletal structure. Mar Geol. 71:341–362. doi:10.1016/0025-3227(86)90077-0
  • Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, et al. 2012. The geological record of ocean acidification. Science. 335(6072):1058–1063. doi:10.1126/science.1208277.
  • Horodyski RS, Ghilardi RP, Bosetti EP, Schmidt-Neto H. 2017. Tafofácies e a tafonomia estratigráfica em ambientes marinhos rasos. In: Horodyski RS, Erthal F, editors. Tafonomia: métodos, processos e aplicação. Curitiba (Brasil): EDITORA CRV; p. 143–173.
  • House JE. 2007. Principles of Chemical Kinetics. 2nd ed. Amsterdam ; Boston: Academic Press.
  • Kase T. 1990. Late Cretaceous gastropods from the izumi group of southwest Japan. J Paleontol. 64(4):563–578. doi:10.1017/S0022336000042608.
  • Kidwell SM, Rothfus TA, Best MMR. 2001. Sensitivity of taphonomic signatures to sample size, sieve size, damage scoring system, and target taxa. Palaios. 16(1):26–52. doi:10.1669/0883-1351(2001)016<0026:SOTSTS&#x003E 2.0.CO;2
  • Kiel S, Bandel K. 2002. About some aporrhaid and strombid gastropods from the late cretaceous. Paläont Z. 76(1):83–97. doi:10.1007/BF02988188.
  • Kohn AJ, Riggs AC. 1975. Morphometry of the conus shell. Syst Zool. 24(3):346–359. doi:10.2307/2412720.
  • Kotz JC, Treichel P, Weaver GC. 2015. Química geral e reações químicas. São Paulo: Cengage Learning.
  • Kowalewski M. 1999. Actuopaleontology: the strength of its limitations. Acta Palaeontologica Polonica. 44(4):452–454.
  • Kowalewski M, Labarbera M. 2004. Actualistic taphonomy: death, decay, and disintegration in contemporary settings. palo. 19(5):423–427. doi:10.1669/0883-1351(2004)019<0423:ATDDAD&#x003E 2.0.CO;2
  • Kump LR, Bralower TJ, Ridgwell A. 2009. Ocean acidification in deep time. Oceanogr. 22(4):94–107. doi:10.5670/oceanog.2009.100.
  • Lasker H. 1976. Effects of differential preservation on the measurement of taxonomic diversity. Paleobiology. 2(1):84–93. doi:10.1017/S0094837300003316.
  • Limeira Junior SCM Jr, Rodrigues SC, Ghilardi RP. 2023. Characterization of the cross-lamellar structure of Olivancillaria urceus (Gastropoda: Olividae) and its dissolution pattern. Micron. 166:103416. doi:10.1016/j.micron.2023.103416
  • Lu C. 2014. Biological model representation and analysis. Leiden: Leiden University.
  • Machkour-M’Rabet S, Hanes MM, Martínez-Noguez JJ, Cruz-Medina J, León FJ G-D. 2021. The queen conch mitogenome: intra- and interspecific mitogenomic variability in strombidae and phylogenetic considerations within the hypsogastropoda. Sci Rep. 11(1):11972. doi:10.1038/s41598-021-91224-0.
  • Martin R. 2003. The fossil record of biodiversity: nutrients, productivity, habitat area and differential preservation. Lethaia. 36(3):179–193. doi:10.1080/00241160310005340.
  • McClintock JB, Angus RA, Mcdonald MR, Amsler CD, Catledge SA, Vohra YK. 2009. Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification. Antarctic Sci. 21(5):449–456. doi:10.1017/S0954102009990198.
  • Mitchell EAD, Payne RJ, Lamentowicz M. 2008. Potential implications of differential preservation of testate amoeba shells for paleoenvironmental reconstruction in peatlands. J Paleolimnol. 40(2):603–618. doi:10.1007/s10933-007-9185-z.
  • Newell AJ, Gower DJ, Benton MJ, Tverdokhlebov VP. 2007. Bedload abrasion and the in situ fragmentation of bivalve shells. Sedimentology. 54(4):835–845. doi:10.1111/j.1365-3091.2007.00862.x.
  • Norell MA, Novacek MJ. 1992. The fossil record and evolution: comparing cladistic and paleontologic evidence for vertebrate history. Sci. 255(5052):1690–1693. doi:10.1126/science.255.5052.1690.
  • Nützel A. 2005. Recovery of gastropods in the early triassic. C. R. Palevol. 4(6):501–515. doi:10.1016/j.crpv.2005.02.007.
  • Peebles MW, Lewis RD. 1988. Differential infestation of shallow-water benthic foraminifera by microboring organisms: possible biases in preservation potential. PALAIOS. 3(3):345–351. doi:10.2307/3514663.
  • Plotnick RE, Baumiller T, Wetmore KL. 1988. Fossilization potential of the mud crab, Panopeus (brachyura: Xanthidae) and temporal variability in crustacean taphonomy. Palaeogeogr Palaeoclimatol Palaeoecol. 63(1):27–43. doi:10.1016/0031-0182(88)90089-2.
  • Ponder WF, Colgan DJ, Healy JM, Nützel A, Simone LRL, Strong EE. 2008. Caenogastropoda. In: Ponder WF, editor. Phylogeny and evolution of the Mollusca. Oakland: University of California Press; p. 331–383. doi:10.1525/california/9780520250925.003.0013.
  • Ritter MN, Erthal F, Coimbra JC. 2013. Taphonomic signatures in molluscan fossil assemblages from the Holocene lagoon system in the northern part of the coastal plain, rio grande do sul state, Brazil. Quat Int. 305:5–14.
  • Rodrigues SC, Simões MG. 2010. Taphonomy of bouchardia rosea (RhynchoNelliformea, Brachiopoda) shells from ubatuba Bay, Brazil: implications for the use of taphonomic signatures in (paleo)environmental analysis. Ameghiniana. 47(3):373–386.
  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, et al. 2004. The oceanic sink for anthropogenic CO2. Science. 305(5682):367–371. doi:10.1126/science.1097403.
  • Schopf TJM. 1978. Fossilization potential of an intertidal fauna: Friday Harbor, Washington. Paleobiology. 4(3):261–270. doi:10.1017/S0094837300005996.
  • Sepkoski JJ. 1997. Biodiversity: past, present, and future. J Paleontol. 71(4):533–539. doi:10.1017/S0022336000040026.
  • Shaw JO, Briggs DEG, Hull PM. 2020. Fossilization potential of marine assemblages and environments. Geology. 49(3):258–262. doi:10.1130/G47907.1.
  • Simões MG, Rodrigues SC, Bertoni-Machado C, Holz M. 2010. Tafonomia: processos e Ambientes de Fossilização. In: de S CI, editor. Paleontologia: conceitos e métodos. 3rd ed. Rio de Janeiro (RJ): Editora Interciência; p. 19–51.
  • Simone LRL. 2007. Estudos de morfologia detalhada e de filogenia em Moluscos: uma análise comparativa. Tópicos em malacologia - Ecos do XVIII EBRAM [Internet]. [accessed 2023 Feb 25]. https://repositorio.usp.br/item/001652329
  • Smith AM, Nelson CS. 2003. Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits. Earth-Science Reviews. 63(1):1–31. doi:10.1016/S0012-8252(02)00164-2.
  • Sohl NF. 1969. The fossil record of shell boring by snails. Am Zool. 9(3):725–734.
  • Sousa FN, Marques RC, Ribeiro VR, Gaia GA, Guilherme E, Maciente A, de S-FJP, Hsiou AS, Ghilardi RP. 2021. Gastropods from the solimões formation (upper Miocene. Acre Basin Brazil Rev Bras de Paleontol. 24(3):195–204. doi:10.4072/rbp.2021.3.03.
  • Stephenson LW 1941. The larger invertebrate fossils of the Navarro group of Texas (exclusive of corals and crustaceans and exclusive of the fauna of the Escondido formation). Vol. 4101. University of Texas publication; p. 1–438.
  • Strong EE, Puillandre N, Beu AG, Castelin M, Bouchet P. 2019. Frogs and tuns and tritons – a molecular phylogeny and revised family classification of the predatory gastropod superfamily Tonnoidea (Caenogastropoda). Mol Phylogenet Evol. 130:18–34. doi:10.1016/j.ympev.2018.09.016
  • Taylor JD, Reid DG. 1990. Shell microstructure and mineralogy of the Littorinidae: ecological and evolutionary significance. In: Johannesson K, Raffaelli DG, Hannaford Ellis CJ, editors. Progress in littorinid and muricid biology. Dordrecht: Springer Netherlands; p. 199–215.
  • Togo Y, Suzuki S, Iwata K, Uozumi S. 1991. Larval shell formation and mineralogy in neptunea arthritica (Bernardi) (Neogastropoda: Buccinidae). In: Suga S, Nakahara H, editors. Mechanisms and phylogeny of mineralization in biological systems. Tokyo: Springer Japan; p. 151–155. doi:10.1007/978-4-431-68132-8_25
  • Torello DF. 2004. Tafonomia experimental do fóssil vivo Bouchardia rosea (brachiopoda, terebratellidae) e suas aplicações em paleontologia [ PhD Thesis]. São Paulo: Universidade de São Paulo.
  • Tursch B, Machbaete Y. 1995. The microstructure of the shell in the genus Oliva (Studies on Olividae. 24). Apex. 10(2/3):61–78.
  • Urrutia GX, Navarro JM. 2001. Patterns of shell penetration by chorus giganteus juveniles (Gastropoda: Muricidae) on the mussel semimytilus algosus. J Exp Mar Bio Ecol. 258(2):141–153. doi:10.1016/S0022-0981(00)00349-X.
  • Vasconcelos P, Gaspar M. 2017. A importância e utilidade dos estudos morfométricos e do crescimento relativo em bivalves e gastrópodes. Portugala. 20:10–11.
  • Vermeij GJ. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology. 3(3):245–258.
  • Vogler RE, Beltramino AA, Peso JG, Rumi A. 2014. Threatened gastropods under the evolutionary genetic species concept: redescription and new species of the genus aylacostoma (Gastropoda: Thiaridae) from high paraná river (Argentina–Paraguay). Zool J Linn Soc. 172(3):501–520. doi:10.1111/zoj.12179.
  • Wagner PJ. 2002. Phylogenetic Relationships of the Earliest Anisostrophically Coiled Gastropods. Vol. 88. Washington: Smithsonian Institution Press; p. 1–152. doi:10.5479/si.00810266.88.1.
  • Watabe N. 1984. Shell. In: Bereiter-Hahn J, Matoltsy AG, Richards KS, editors. Biology of the Integument: invertebrates [Internet]. Berlin Heidelberg: Springer-Verlag; p. 448–485. doi:10.1007/978-3-642-51593-4.
  • Watabe N. 1988. Shell structure. In: Trueman ER, Clarke MR, editors. The Mollusca: form and Function (Vol. 11). Orlando: Academic Press; p. 69–104.
  • Webster NB, Vermeij GJ. 2017. The varix: evolution, distribution, and phylogenetic clumping of a repeated gastropod innovation. Zool J Linn Soc. 180(4):732–754. doi:10.1093/zoolinnean/zlw015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.