315
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Palynofloristics and wildfire evidence from Permian deposits of the Satpura Gondwana Basin, India: a multiproxy approach

, , , , , , & show all
Received 31 May 2023, Accepted 16 Oct 2023, Published online: 01 Nov 2023

References

  • Aggarwal N. 2022. A palynomorph ecological model for the late Paleozoic successions of Indian coal deposits with special emphasis on Godavari Valley Coalfield: conception and configuration. Res Sq. doi: 10.21203/rs.3.rs-2055866/v1.
  • Aggarwal N, Jha N, Joshi H, Mishra S. 2015. Dispersed organic studies in Permian succession mamakanu block of Godavari Graben, South India. J Indian Geol Cong. 7(2):5–15.
  • Anderson JM. 1977. The biostratigraphy of the Permian and Triassic. Part 3: a review of Gondwana palynology with particular reference to the northern Karoo basin, South Africa. Mem Bot Sur S Afr. 41:1–133.
  • Awatar R, Mukhopadhyay A, Adhikari S. 2004. Palynostratigraphy of subsurface Pali sediments, Sohagpur Coalfield, MP, India; Palaeobotanist. J Palaeosciences. 53(53):51–59. doi: 10.54991/jop.2004.208.
  • Balme BE. 1995. Fossil in situ spores and pollen grains: an annotated catalogue. Rev Palaeobot Palynol. 87(2–4):81–323. doi: 10.1016/0034-6667(95)93235-X.
  • Belcher CM, Collinson ME, Scott AC. 2013. A 450-million year history of fire. In: Belcher C, editor Fire phenomena and the Earth system: an interdisciplinary guide to fire science. Chichester, UK: John Wiley and Sons; pp. 229–249.
  • Belcher CM, Hudspith VA. 2017. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms. New Phytol. 213(3):1521–1532. doi: 10.1111/nph.14264.
  • Belcher CM, Mander L, Rein G, Jervis FX, Haworth M, Hesselbo SP, Glasspool IJ, McElwain JC. 2010. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nat Geosci. 3(6):426–429. doi: 10.1038/ngeo871.
  • Benton MJ. 2018. Hyperthermal-driven mass extinctions: killing models during the Permian–Triassic mass extinction. Phil Trans R Soc A. 376(2130):20170076. doi: 10.1098/rsta.2017.0076.
  • BE B, Playford G. 1967. Late Permian plant microfossils from the Prince Charles Mountains, Antarctica. Rev Micropalaeontol. 10:179–192.
  • Bharadwaj DC, Navale GKB, Prakash A. 1974. Palynostratigraphy and petrology of lower Gondwana coals in Pench-Kanhan Coalfield, Satpura Gondwana Basin, M.P. India Geophytology. 4(1):7–24.
  • Bharadwaj DC, Prakash A. 1972. Geological and Palynostratigraphy of lower Gondwana Formation in Mohapani Coalfield, Madhya Pradesh. India Geophytology. 1(2):103–115.
  • Bharadwaj DC, Tiwari RS. 1977. Permian-Triassic miofloras from the Raniganj Coalfield, India. Palaeobotanist. 24(1–3):26–49. doi: 10.54991/jop.1975.971.
  • Bharadwaj DC, Tiwari RS, Prakash A. 1978. Palynology of Bijori Formation (Upper Permian) in Satpura Gondwana Basin, India. Palaeobotanist. 25(1–3):72–78. doi: 10.54991/jop.1976.997.
  • Bhattacharya B, Bandyopadhyay S, Mahapatra S, Banerjee S. 2012. Record of tide-wave influence on the coal-bearing Permian Barakar Formation, Raniganj Basin, India. Sediment Geol. 267:25–35. doi: 10.1016/j.sedgeo.2012.05.006.
  • Bhattacharya B, Bhattacharjee J, Banerjee S, Roy T, Bandyopadhyay S. 2021. Palaeogeographic implications of ichnotaxa assemblages from early Permian fluvio–marine Barakar Formation, Raniganj Basin, India. J Earth Sys Sci. 130(1):1–25. doi: 10.1007/s12040-020-01522-w.
  • Bojesen-Koefoed JA, Petersen HI, Surlyk F, Vosgerau H. 1997. Organic petrography and geochemistry of inertinite-rich mudstones, jakobsstigen Formation, upper Jurassic, northeast Greenland: indications of forest fires and variations in relative sea-level. Int J Coal Geol. 34(3–4):345–370. doi: 10.1016/S0166-5162(97)00030-X.
  • Bond WJ, Scott AC. 2010. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 188(4):1137–1150. doi: 10.1111/j.1469-8137.2010.03418.x.
  • Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, Defries RS, Doyle JC, Harrison SP, et al. 2009. Fire in the Earth system. Sci. 324(5926):481–484. doi: 10.1126/science.1163886.
  • Cascales‐Miñana B, Cleal CJ. 2014. The plant fossil record reflects just two great extinction events. Terra Nova. 26(3):195–200. doi: 10.1111/ter.12086.
  • Cascales–Miñana B, Diez JB, Gerrienne P, Cleal CJ. 2016. A palaeobotanical perspective on the great end–Permian biotic crisis. Hist Biol. 28(8):1066–1074. doi: 10.1080/08912963.2015.1103237.
  • Casshyap SM, QIDWAI HA. 1974. Glacial sedimentation of late palaeozoic Talchir diamictite, Pench Valley Coalfield, central India. Geol Soc Am Bull. 45(5):749–760. doi: 10.1130/0016-7606(1974)85<749:GSOLPT>2.0.CO;2.
  • Casshyap SM, Tewari RC. 1987. Depositional model and tectonic evolution of Gondwana basins. Palaeobotanist. 36:59–66. doi: 10.54991/jop.1987.1561.
  • Césari SN, Gutiérrez PR. 2000. Palynostratigraphy of upper Paleozoic sequences in central‐western Argentina. Palynol. 24(1):113–146. doi: 10.1080/01916122.2000.9989541.
  • Chakraborty C, Ghosh SK. 2005. Pull-apart origin of the Satpura Gondwana basin, central India. J Earth Syst Sci. 114(3):259–273. doi: 10.1007/BF02702949.
  • Chakraborty C, Ghosh SK. 2008. Pattern of sedimentation during the late Paleozoic, Gondwanaland glaciation: an example from the Talchir Formation, Satpura Gondwana basin, central India. J Earth Syst Sci. 117(4):499–519. doi: 10.1007/s12040-008-0049-3.
  • Chakraborty C, Ghosh SK, Chakraborty T. 2003. Depositional record of tidal-flat sedimentation in the Permian coal measures of central India: barakar formation, Mohpani coalfield, Satpura Gondwana basin. Gond Res. 6(4):817–827. doi: 10.1016/S1342-937X(05)71027-3.
  • Chakraborty SM, Sarkar S. 2005. Evidence of lacustrine sedimentation in the Upper Permian Bijori Formation, Satpura Gondwana Basin: palaeogeographic and tectonic implications. J Earth Syst Sci. 114(3):303–323. doi: 10.1007/BF02702952.
  • Collinson ME. 2002. The ecology of cainozoic ferns. Rev Palaeobot Palynol. 119:51–68.
  • Cope MJ, Chaloner WG. 1985. Wildfire: an interaction of biological and physical processes. In: Tiffney B, editor. Geological factors and the evolution of plants. New Haven: Yale University Press; pp. 257–277.
  • Crookshank H. 1936. Geology of the northern slopes of the Satpuras between the Morand and Sher Rivers. Mem Geol Sur India. 66(2):173–272.
  • Daber R. 1968. A weichselia—stiehleria—matoniaceae community within the quedlinburg estuary of lower Cretaceous age. Bot J Linn Soc. 61(384):75–85. doi: 10.1111/j.1095-8339.1968.tb00104.x.
  • Diessel CFK. 2010. The stratigraphic distribution of inertinite. Int J Coal Geol. 81(4):251–268. doi: 10.1016/j.coal.2009.04.004.
  • El-Khayal AA. 1985. Occurrence of a characteristic wealden fern (weichselia reticulata) in the Wasia Formation, central Saudi Arabia. Scr Geol. 79:75–88.
  • Falcon RMS. 1975. Palynostratigraphy of the Karoo sequence in the central Sebungwe district, Mid Zambezi Basin, Rhodesia. Palaeontol Afr. 18:1–29.
  • Feistmantel O. 1879. Palaeontological notes from the Satpura coal- Basin. Rec Geol Sur India. 12:74–83.
  • Feistmantel O. 1881. The fossil flora of Gondwana System II. The flora of the Damuda and Panchet divisions. Mem Geol Sur India Palaeontologia Indica. 12(3):78–149.
  • Fielding CR, Frank TD, Birgenheier LP. 2023. A revised, late palaeozoic glacial time-space framework for eastern Australia, and comparisons with other regions and events. Earth Sci Rev. 236:104263. doi: 10.1016/j.earscirev.2022.104263.
  • Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM, de Groot WJ. 2009. Implications of changing climate for global wildland fire. Int J Wildland Fire. 18(5):483–507. doi: 10.1071/WF08187.
  • Forte G, Kustatscher E, Roghi G, Preto N. 2018. The Permian (Kungurian, Cisuralian) palaeoenvironment and palaeoclimate of the Tregiovo Basin, Italy: palaeobotanical, palynological and geochemical investigations. Palaeogeog Palaeoclimat Palaeoecol. 495:186–204. doi: 10.1016/j.palaeo.2018.01.012.
  • Foster CB. 1979. Permian plant microfossils of the Blair Athol coal measures, Baralaba coal measures, and basal rewan Formation of Queensland. Geol Sur Queensland Palaeontological Paper. 45:1–244.
  • Foster CB. 1982. Spore-pollen assemblages of the Bowen Basin, Queensland (Australia): their relationship to the Permian/Triassic boundary. Rev Palaeobot Palynol. 36(1–2):165–183. doi: 10.1016/0034-6667(82)90016-1.
  • Ganju PN. 1960. The nature and origin of the microconstituents in the Pench Valley coals. Proc Indian National Sci Acad. 26A:26–36.
  • Ghosh SK, Chakraborty C, Chakraborty T. 2004. Combined tide and wave influence on sedimentation of lower Gondwana coal measures of central India: barakar Formation (Permian), Satpura basin. J Geol Soc India. 161(1):117–131. doi: 10.1144/0016-764902-077.
  • Glasspool IJ. 2003. A review of Permian Gondwana megaspores, with particular emphasis on material collected from coals of the Witbank Basin of South Africa and the Sydney Basin of Australia. Rev Palaeobot Palynol. 124(3–4):227–296. doi: 10.1016/S0034-6667(02)00252-X.
  • Glasspool IJ, Edwards D, Axe L. 2004. Charcoal in the Silurian as evidence for the earliest wildfire. Geology. 32(5):381–383. doi: 10.1130/G20363.1.
  • Götz AE, Hancox PJ, Lloyd A. 2018. Southwestern Gondwana’s Permian climate amelioration recorded in coal-bearing deposits of the moatize sub-basin (Mozambique). Palaeoworld. doi: 10.1016/j.palwor.2018.08.004.
  • Gutiérrez PR, Zavattieri AM, Ezpeleta M, Astini RA. 2011. Palynology of the La veteada Formation (Permian) in the Sierra De Narváez, Catamarca province, Argentina. Ameghiniana. 48(2):154–176. doi: 10.5710/AMGH.v48i2(309).
  • Hamad AMA, Jasper A, Uhl D. 2012. The record of Triassic charcoal and other evidence for palaeo-wildfires: signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? Int J Coal Geol. 96:60–71. doi: 10.1016/j.coal.2012.03.006.
  • Hankel O. 1992. Late Permian to early Triassic microfloral assemblages from the maji ya chumvi Formation, Kenya. Rev Palaeobot Palynol. 72(1–2):129–147. doi: 10.1016/0034-6667(92)90181-F.
  • Harris TM. 1958. Forest fire in the Mesozoic. J Ecol. 46(2):447–453. doi: 10.2307/2257405.
  • Hower JC, O’Keefe JMK, Eble CF, Raymond A, Valentim B, Volk TJ, Richardson AR, Satterwhite AB, Hatch RS, Stucker JD, et al. 2011. Notes on the origin of inertinite macerals in coal: evidence for fungal and arthropod transformations of degraded macerals. Int J Coal Geol. 86(2–3):231–240. doi: 10.1016/j.coal.2011.02.005.
  • Hudspith V, Scott AC, Collinson ME, Pronina N, Beeley T. 2012. Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: an example from the late Permian, Kuznetsk Basin, Russia. Int J Coal Geol. 89:13–25. doi: 10.1016/j.coal.2011.07.009.
  • [ICCP] International Committee for Coal and Organic Petrology. 2001. The new inertinite classification (ICCP System 1994). Fuel. 80(4):459–471. doi:10.1016/S0016-2361(00)00102-2.
  • Isbell JL, Miller MF, Wolfe KL, Lenaker PA, Chan MA, Archer AW. 2003. Timing of late Paleozoic glaciation in Gondwana; was glaciation responsible for the development of northern Hemisphere cyclothems? Geol Soc Am Bull. 370:5–24.
  • ISO 7404-2. 2009. Methods for the Petrographic analysis of coals - part 2: methods of preparing coal samples. Geneva, Switzerland: ISO. p. 12.
  • ISO 7404-3. 2009. Methods for the Petrographic analysis of coals – part 3: method of determining maceral group composition. ISO. 7:.
  • ISO 7404-5. 2009. Methods for the Petrographic analysis of coals – part 5: method of determining microscopically the reflectance of Vitrinite. ISO. 14:1–26 .
  • Jasper A, Agnihotri D, Tewari R, Spiekermann R, Pires EF, da Rosa ´aas Uhl D. 2017. Fires in the mire: repeated fire events in early Permian ‘peat forming’ vegetation of India. Geological J. 52(6):955–969. doi: 10.1002/gj.2860.
  • Jasper A, Guerra-Sommer M, Abu Hamad AMB, Bamford M, Bernardes-de-Oliveira MEC, Tewari R, Uhl D. 2013. The burning of Gondwana: Permian fires on the southern continent — a palaeobotanical approach. Gond Res. 24(1):148–160. doi: 10.1016/j.gr.2012.08.017.
  • Jasper A, Guerra-Sommer M, Uhl D, Bernardes-de-Oliveira MEC, Tewari R, Secchi MI. 2012. Palaeobotanical evidence of wildfires in the upper Permian of India: macroscopic charcoal remains from the Raniganj Formation, Damodar Valley Basin. Palaeobotanist. 61(1–2):75–82. doi: 10.54991/jop.2012.351.
  • Jasper A, Pozzebon-Silva A, Carniere JS, Uhl D. 2021. Palaeozoic and Mesozoic palaeo–wildfires: an overview on advances in the 21st Century. J Palaeosci. 70((1–2)):159–172. doi: 10.54991/jop.2021.13.
  • Jasper A, Uhl D, Agnihotri D, Tewari R, Pandita SK, Benicio JRW, Pires EF, da Rosa AAS, Bhat GD, Pillai SSK. 2016. Evidence of wildfire in the late Permian (Changhsingian) zewan Formation of Kashmir, India. Curr Sci. 110(3):419–423. doi: 10.18520/cs/v110/i3/419-423.
  • Jha N. 2008. Permian Triassic palynofloral transition in the Sattupalli area, Chintalapudi sub–basin, Godavari Graben, Andhra Pradesh, India. J Palaeontol Soc India. 53:159–168.
  • Jha N, Aggarwal N. 2015. Peat-forming environment of coal-bearing Permian sediments in Kachinapalli area of Godavari Graben, India. Rev Bras de Paleontol. 18(2):239–250. doi: 10.4072/rbp.2015.2.05.
  • Jha N, Kavali PS, Aggarwal N, Mahesh S. 2014. Late Permian palynology and depositional environment of the Chintalapudi sub–basin of Godavari Basin, Andhra Pradesh, India. J Asian Earth Sci. 79:382–399. doi: 10.1016/j.jseaes.2013.10.010.
  • Jha N, Srivastava SC. 1984. Occurrence of megaspores in Kamthi Formation of Godavari Valley Coalfield, Andhra Pradesh. Geophytology. 14:121–122.
  • Jha N, Srivastava SC. 1996. Kamthi Formation palynofloral diversity. In: Guha P, Sengupta S, Ayyasami K Ghosh R, editors. Gondwana Nine. Calcutta: Oxford and IBH Publishing Co; pp. 355–368.
  • Jha N, Tewari R. 2003. Megaspores from Raniganj Formation of Mailaram area, Godavari Graben, Andhra Pradesh, India. Phytomorphology. 53(2):141–156.
  • Jha N, Tewari R, Rajanikanth A. 2007. Palynology of Permian Gondwana sequence of Umrer Coalfield, Maharashtra. J Geol Soc India. 69:851–857.
  • Jones TP. Fusain in late Jurassic sediments from the Witch ground Graben. North Sea, UK: Mededelingen Nederlands Instituut voor Toegepaste Geowwetenschappen TNO National Geological Survey; 1997. pp. 93–104.
  • Jones MW, Abatzoglou JT, Veraverbeke S, Andela N, Lasslop G, Forkel M, Smith AJP, Burton C, Betts RA, van der Werf GR, et al. 2022. Global and regional trends and drivers of fire under climate change. Reviews Geophysics. 60(3):e2020RG000726. doi: 10.1029/2020RG000726.
  • Jones TP, Chaloner WG. 1991. Fossil charcoal, its recognition and palaeoatmospheric significance. Palaeogeogr Palaeoclimatol Palaeoecol. 97(1–2):39–50. doi: 10.1016/0031-0182(91)90180-Y.
  • Jones TP, Rowe NP. 1999. Fossil plants and spores: modern techniques. London: Geol Soc London. p. 396.
  • Jones TP, Scott AC, Cope MJ. 1991. Reflectance measurements and the temperature of formation of modern charcoals and implications for studies of fusain. Bull Soc Géol Fr. 162(2):193–200.
  • Kar R. 2003. Palynological recognition of Barren measures sediments (middle Permian) from Tatapani‐Ramkola Coalfield, Chhattisgarh, India. Gond Geol Mag. 6:239–244.
  • Kar R, Srivastava SC. 2003. Palynological delimitation of the coal bearing lower Gondwana sediments in the southern part of Tatapani‐Ramkola Coalfield, Chhattisgarh, India. J Geol Soc India. 61:557–564.
  • Keeley JE, Pausas JG. 2022. Evolutionary ecology of fire. Annu Rev Ecol Evol Syst. 53(1):203–225. doi: 10.1146/annurev-ecolsys-102320-095612.
  • Kemp EM. 1973. Permian flora from the Beaver Lake area, Antarctica. 1. Palynological examination of samples. Bur Min Res Bull Australia. 126:7–12.
  • Kerp H. 1990. The study of fossil gymnosperms by means of cuticular analysis. Palaios. 5(6):548–569. doi: 10.2307/3514861.
  • Kubik R, Marynowski L, Uhl D, Jasper A. 2020. Co-occurrence of charcoal, polycyclic aromatic hydrocarbons and terrestrial biomarkers in an early Permian swamp to lagoonal depositional system, Paraná Basin, Rio Grande do sul, Brazil. Int J Coal Geol. 230:103590. doi: 10.1016/j.coal.2020.103590.
  • Kubik R, Uhl D, Marynowski L. 2015. Evidence of wildfires during deposition of the upper Silesian Keuper succession. Ann Soc Geol Pol. 85:685–696. doi: 10.14241/asgp.2014.009.
  • Kumar P. 1996. Permo–Triassic palynofossils and depositional environment in Satpura Basin, Madhya Pradesh. Geophytology. 25:47–54.
  • Kyle RA, Schopf JM. 1982. Permian and Triassic palynostratigraphy of the Victoria group, Transantarctic Mountains. In: Craddock C, editor Antarctic geoscience. Madison: University Wisconsin Press; pp. 649–659.
  • Li G, Gao L, Liu F, Qiu M, Dong G. 2022. Quantitative studies on charcoalification: physical and chemical changes of charring wood. Fundam Res. doi: 10.1016/j.fmre.2022.05.014.
  • Lindström S. 1996. Late Permian palynology of Fossilryggen, Vestfjella, dronning maund land, Antarctica. Palynol. 20(1):15–48. doi: 10.1080/01916122.1996.9989469.
  • Liu F, Peng H, Bomfleur B, Kerp H, Zhu H, Shen S. 2020. Palynology and vegetation dynamics across the Permian–Triassic boundary in southern Tibet. Earth-Science Reviews. 209:103278. doi: 10.1016/j.earscirev.2020.103278.
  • Lupia R. 1995. Paleobotanical data from fossil charcoal: an actualistic study of seed plant reproductive structures. Palaios. 10(5):465–477. doi: 10.2307/3515048.
  • Mahesh S, Murthy S, Chakraborty B, Roy MD. 2015. Fossil charcoal as palaeofire indicators: Taphonomy and morphology of charcoal remains in sub-surface Gondwana sediments of south Karanpura coalfield. J Geol Soc India. 85: 567–576.
  • Mahesh S, Murthy S, Gautam S, Souza PA, Kavali PS, Bernardes-de-Oliveira MEC, Awatar R, Félix CM. 2017. Macroscopic charcoal remains as evidence of wildfire from late Permian Gondwana sediments of India: further contribution to global fossil charcoal database. Palaeoworld. 26(4):638–649. doi: 10.1016/j.palwor.2017.05.003.
  • Marques–Toigo M. 1991. Palynobiostratigraphy of the southern Brazilian Neopalaeozoic Gondwana sequence. In: Ulbrich H Rocha Campos A, editors Gondwana Seven. São Paulo: Institute of Geoscience, USP; pp. 503–515.
  • McLauchlan KK, Higuera PE, Miesel J, Rogers BM, Schweitzer J, Shuman JK, Tepley AJ, Varner JM, Veblen TT, Adalsteinsson SA, et al. 2020. Fire as a fundamental ecological process: research advances and frontiers. J Ecol. 108:2047–2069. doi: 10.1111/1365-2745.13403.
  • McLoughlin S, Prevec R. 2021. The reproductive biology of glossopterid gymnosperms—A review. Rev Palaeobot Palynol. 295:104527. doi: 10.1016/j.revpalbo.2021.104527.
  • McParland LC, Collinson ME, Scott AC, Campbell G. 2009. The use of reflectance values for the interpretation of natural and anthropogenic charcoal assemblages. Archaeol Anthropol Sci. 1(4):249–261. doi: 10.1007/s12520-009-0018-z.
  • McParland LC, Collinson ME, Scott AC, Steart DC, Grassineau NV, Gibbons SJ. 2007. Ferns and fires: experimental charring of ferns compared to wood and implications for palaeobiology, palaeoecology, coal petrology, and isotope geochemistry. Palaios. 22(5):528–538. doi: 10.2110/palo.2005.p05-138r.
  • Mishra S, Jha N 2017. Early permian (Asselian-Sakmarian) palynoflora from the Chintalpudi area, Godavari Graben, South India and its palaeoenvironmental implications. J. Palaeont. Soc. India. 62:23–40.
  • Mishra DP, Murthy S, Pandey B, Singh AK. 2021. Palaeobotanical evidence for Artinskian wildfire in the Talcher Coalfield, Mahanadi Basin, India. J Palaeontol Soc India. 66(2):303–314.
  • Mishra S, Singh VP 2018. Palynology, palynofacies and taphonomical studies of Kamthi Formation, (Godavari Graben), southern India: implications to biostratigraphy, palaeoecology, and depositional environment. Int J Coal Geol. 195:102–124.
  • Mishra DP, Singh VP, Saxena A, Uhl D, Murthy S, Pandey B, Kumar R. 2022. Palaeoecology and depositional setting of early Permian (artinskian) mire based on a multi-proxy study at the Jagannath coal mine (Talcher Coalfield. Mahanadi Basin India Palaeogeogr Palaeoclimatol Palaeoecol. 601:111124. doi: 10.1016/j.palaeo.2022.111124.
  • Modie BN, Hérissé A L. 2009. Late palaeozoic palynomorph assemblages from the Karoo supergroup and their potential for biostratigraphic correlation, Kalahari Karoo Basin, Botswana. Bull Geosci. 84(2):337–358. doi: 10.3140/bull.geosci.1122.
  • Montañez IP, Tabor NJ, Niemeier D, DiMichele WA, Frank TD, Fielding CR, Isbell JL, Birgenheier LP, Rygel MC. 2007. CO2-forced climate and vegetation instability during late Paleozoic deglaciation. Sci. 315(5808):87–91. doi: 10.1126/science.1134207.
  • Mukherjee BC. 1971. A note on the petrological characters and rank variation in coal occurrences around Pathakhera. In: B. Pal, editor. Proc Indian Sci Cong. Vol. 3. Betul, M.P; pp. 302–303.
  • Mukhopadhyay G, Mukhopadhyay SK, Roychowdhury M, Parui PK. 2010. Stratigraphic correlation between different Gondwana basins of India. J Geol Soc India. 76(3):251–266. doi: 10.1007/s12594-010-0097-6.
  • Murthy S. 2010. Palynostratigraphy of the Permian succession in borehole RJS-2, Raniganj Coalfield, Damodar Basin, west Bengal. J Indian Geol Cong. 2(2):83–90.
  • Murthy S, Awatar R, Gautam S. 2014. Palynostratigraphy of Permian succession in the Mand-Raigarh coalfield, Chhattisgarh, India. J Earth Sys Sci. 123(8):1879–1893. doi: 10.1007/s12040-014-0498-9.
  • Murthy S, Chakraborty B, Roy MD. 2010. Palynodating of subsurface sediments, Raniganj coalfield, Damodar Basin, west Bengal. J Earth Syst Sci. 119(5):701–710. doi: 10.1007/s12040-010-0049-y.
  • Murthy S, Mahesh S, Jyoti Shankar R. 2016. Palyno-petrographical facet and depositional account of Gondwana sediments from east Bokaro Coalfield, Jharkhand, India. J Geol Soc India. 88(5):549–558. doi: 10.1007/s12594-016-0520-8.
  • Murthy S, Mendhe VA, Uhl D, Mathews RP, Mishra VK, Gautam S. 2021. Palaeobotanical and biomarker evidence for wildfire in the early Permian (artinskian) of the Rajmahal Basin, India. J Palaeogeogr. 10(1):1–26. doi: 10.1186/s42501-021-00084-2.
  • Murthy S, Vijaya Vethanayagam SM. 2013. Palynostratigraphy of Permian succession in the Pench Valley Coalfield, Satpura Basin, Madhya Pradesh, India. J Palaeontol Soc India. 58(2):241–250.
  • Nandgaonkar BR. 1977. Study of the occurrence of coal at Patha- khera Coalfield, Satpura Basin of M.P. with special reference to their chemical and petrological characters. 4th Int Gond symp. Vol. 1. Calcutta: Geological Survey of India. pp. 320–323.
  • Novak H, Schneebeli-Hermann E, Kustatscher E. 2019. No mass extinction for land plants at the Permian–Triassic transition. Nat Commun. 10(1):384. doi: 10.1038/s41467-018-07945-w.
  • O’Keefe JMK, Bechtel A, Christanis K, Dai S, Di Michele WA, Eble CF, Esterle JS, Mastalerz M, Raymond AL, Valentim BV, et al. 2013. On the fundamental difference between coal rank and coal type. Int J Coal Geol. 118:58–87. doi: 10.1016/j.coal.2013.08.007.
  • Pant DD, Mishra SN. 1986. On the lower Gondwana megaspores of India. Paleontogr. 198:13–73.
  • Pareek HS. 1966. Petrological characteristics of Barakar coal seams, metamorphosed by lamprophyre sill in the Jharia coalfield, Bihar. Proc/Indian Acad Sci. New Delhi: Springer India. 63(5):261–270. doi: 10.1007/BF03052002.
  • Pareek HS. 1970. Petrology of coal, Burnt coal and para lava from Singrauli Coalfield, MP and UP. Geol Soc India. 11(4):333–347.
  • Pareek HS, Sanyal SP, Chakrabarti NC. 1964. Petrographic studies of the coal seams in the Pench Kanhan Coalfield, India. XXII Int Geol Cong Gond. 9:1–16.
  • Petersen HI, Lindstrom S. 2012. Synchronous wildfire activity rise and mire deforestation at the Triassic-Jurassic boundary. PloS One. 7(10):e47236. doi: 10.1371/journal.pone.0047236.
  • Philippe M. 2011. How many species of Araucarioxylon? C R Palevol. 10(2–3):201–208. doi: 10.1016/j.crpv.2010.10.010.
  • Pillai SSK, Manoj MC, Mathew RP, Murthy S, Saxena A, Sahoo M, Sharma A, Pradhan S, Kumar S. 2023. Lower Permian Gondwana sequence of rajhara (Daltonganj Coalfield), Damodar Basin, India: Floristic and geochemical records and their implications on marine ingressions and depositional environment. Environ Geochem Health. 45(10):6923–6953. doi: 10.1007/s10653-023-01517-8.
  • Playford G. 1990. Antarctic paleobiology: its role in the reconstruction of Gondwanaland. In: Taylor T Taylor E, editors. Proterozoic and Paleozoic palynology of Antarctica; a review. New York: Springer-Verlag; pp. 51–70.
  • Prakash A. 1972. Sporae dispersae in the coals of Pench-Kanhan and Pathakhera Coalfield (M.P. India Palaeobotanist. 19(1–3):206–210. doi: 10.54991/jop.1970.868.
  • Prakash A, Srivastava SC 1984. Miofloral studies of the lower Gondwana sediments in Johilla coalfield, Madhya Pradesh, India. Palaeobotanist. 32(3): 243–252.
  • Prasad B, Pundir BS. 2017. Gondwana biostratigraphy of the Purnea Basin (eastern Bihar, India), and its correlation with Rajmahal and Bengal Gondwana basins. J Geol Soc India. 90(4):405–427. doi: 10.1007/s12594-017-0735-3.
  • Preston CM, Schmidt MWI. 2006. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences. 3(4):397–420. doi: 10.5194/bg-3-397-2006.
  • Prevec R, Labandeira CC, Neveling J, Gastaldo RA, Looy CV, Bamford M. 2009. Portrait of a Gondwanan ecosystem: a new late Permian fossil locality from KwaZulu- Natal, South Africa. Rev Palaeobot Palynol. 156(3–4):454–493. doi: 10.1016/j.revpalbo.2009.04.012.
  • Pyne SJ, Andrews PL, Laven RD. 1996. Introduction to wildland fire. New York: John Wiley and Sons.
  • Rai KL, Shukla RT. 1979. Depositional environment and origin of coal in Pench – Kanhan valley coalfield, M.P., India. In: Proc 4th Int Gond Symp. Vol. 1. Calcutta: Geological Survey of India; pp. 256–274.
  • Rana V, Tiwari RS. 1980. Palynological succession in Permian–Triassic sediments in borehole RNM–3, east Raniganj Coalfield, west Bengal. Geophytology. 10:180–124.
  • Retallack GJ. 1995. Permian–Triassic life crisis on land. Sci. 267(5194):77–80. doi: 10.1126/science.267.5194.77.
  • Sander PM, Gee CT. 1990. Fossil charcoal: techniques and applications. Rev Palaeobot Palynol. 63(3–4):269–279. doi: 10.1016/0034-6667(90)90104-Q.
  • Sarate OS. 1986. Palynological correlation of the coal seams of Pathakhera Coalfield, Madhya Pradesh, India. Geophytology. 16(2):239–248.
  • Saxena A, Gupta S, Pillai SS, Murthy S, Agnihotri D, Khnagar R, Savita C, Khan M. 2022b. Late Permian macrofloral remains from the Bijori Formation, Satpura Gondwana Basin and their biostratigraphic implications. Geophytology. 51:41–58.
  • Saxena A, Khan MM, Raychowdhury N, Singh KJ. 2022a. Early Permian macrofloral diversity in Indian Gondwana: evidence from Talchir Formation of Singrauli coalfield, Son–Mahanadi valley basin, central India. J Earth Sys Sci. 131(2):70. doi: 10.1007/s12040-021-01805-w.
  • Saxena A, Murthy S, Singh KJ. 2019. Floral diversity and environment during the early Permian: a case study from Jarangdih Colliery, east Bokaro Coalfield, Damodar Basin, India. Palaeobiodivers Palaeoenviron. 100(3):33–50. doi: 10.1007/s12549-019-00375-6.
  • Schindler T, Uhl D, Noll R, Bach T, Höhn W, Poschmann M, Rahm B, Schweiss D, Wuttke M. 2004. Erstfunde von Sigillaria-Stämmen in situ in Rotliegend-Ablagerungen (Ober-Karbon bis Unter-Perm) der Nordpfalz (Südwestdeutschland). Neues Jahr Geol Paläontol, Abh. 233(1):1–26. doi: 10.1127/njgpa/233/2004/1.
  • Scott AC. 1989. Observations on the nature and origin of fusain. Int J Coal Geol. 12(1–4):443–475. doi: 10.1016/0166-5162(89)90061-X.
  • Scott AC. 2000. The pre-quaternary history of fire. Palaeogeogr Palaeoclimat, Palaeoecol. 164(1–4):281–329. doi: 10.1016/S0031-0182(00)00192-9.
  • Scott AC. 2001. Preservation by fire. In: Briggs D, and Crowther P, editors. Palaeobiology II. New Jersey, USA: Wiley Blackwells; pp. 277–280 .
  • Scott AC. 2002. Coal petrology and the origin of coal macerals: a way ahead? Int J Coal Geol. 50(1–4):119–134. doi: 10.1016/S0166-5162(02)00116-7.
  • Scott AC. 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr Palaeoclimat, Palaeoecol. 291(1–2):11–39. doi: 10.1016/j.palaeo.2009.12.012.
  • Scott AC, Bowman DM, Bond WJ, Pyne SJ, Alexander ME. 2014. Fire on earth: An introduction. New Jersey, USA: John Wiley and Sons.
  • Scott AC, Cripps J, Collinson ME, Nichols GJ. 2000. The taphonomy of charcoal following a recent heathland fire and some implications for the interpretation of fossil charcoal deposits. Palaeogeogr Palaeoclimat, Palaeoecol. 164(1–4):1–31. doi: 10.1016/S0031-0182(00)00168-1.
  • Scott AC, Glasspool IJ. 2005. Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Geology. 33(7):589–592. doi: 10.1130/G21474.1.
  • Scott AC, Glasspool IJ. 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc Natl Acad Sci USA. 103(29):10861–10865. doi: 10.1073/pnas.0604090103.
  • Scott AC, Glasspool IJ. 2007. Observations and experiments on the origin and formation of inertinite group macerals. Int J Coal Geol. 70(1–3):53–66. doi: 10.1016/j.coal.2006.02.009.
  • Scott AC, Jones TP. 1991. Microscopical observations of recent and fossil charcoal. Microsc Analysis. 24:13–15.
  • Scott AC, Jones TP. 1994. The nature and influence of fires in carboniferous ecosystems. Palaeogeogr Palaeoclimat, Palaeoecol. 106(1–4):91–112. doi: 10.1016/0031-0182(94)90005-1.
  • Scott AC, Kenig F, Plotnick RE, Glasspool IJ, Chaloner WG, Eble CF. 2010. Evidence of multiple late Bashkirian to early moscovian (Pennsylvanian) fire events preserved in contemporaneous cave fills. Palaeogeogr Palaeoclimat, Palaeoecol. 291(1–2):72–84. doi: 10.1016/j.palaeo.2009.06.008.
  • Scott AC, Stea R. 2002. Fire sweep across the Mid-cretaceous landscape of Nova Scotia. The Geoscientist. 12(1):3–6.
  • Sen S, Singh SN, Shamanna BA, Majumdar BD, Kudwali RN, Shrikhande KY. 1971. An appraisal on the quality of coals of Kanhan Valley Coalfield. Fuel Res Inst News. 21(4):96–103.
  • Shah SC, Singh G. 1966. Examination of the Gondwana sediments in the Satpura Basin, M.P. Indian Minerals. 19(4):329.
  • Shen J, Chen J, Algeo TJ, Yuan S, Feng Q, Yu J, Zhou L, O’Connell B, Planavsky NJ. 2019. Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records. Nat Commun. 10(1):1563. doi: 10.1038/s41467-019-09620-0.
  • Shukla RR. 2001. Petrographic characterization and evolution of the coal from Pench-Kanhan Valley and Pathakhera coalfields, Satpura Basin. J Geol Soc India. 58:1.
  • Shukla RT. 1966. A contribution to the stratigraphy of the lower Gondwana of the Kanhan Valley area Chhindwara district, M.P. Cur Sci. 55(13):388–389.
  • Singh YP, Kingson O, Sharma KM, Ghosh P, Patnaik R, Tiwari RP, Pattanaik JK, Kumar P, Harel T, Singh NP, et al. 2023. Evolution of the Permo‐Triassic Satpura Gondwana Basin, Madhya Pradesh, India: insights from geochemical provenance and palaeoclimate of the siliciclastic sediments. Geological J. 58(2):700–721. doi: 10.1002/gj.4619.
  • Singh KJ, Murthy S, Saxena A, Shabbar H. 2017. Permian macro- and miofloral diversity, palynodating and palaeoclimate implications deduced from the coal-bearing sequences of Singrauli coalfield, Son–Mahanadi Basin, central India. J Earth Syst Sci. 126(2):1–16. doi: 10.1007/s12040-017-0809-z.
  • Singh MP, Shukla RR. 2004. Petrographic characteristics and depositional conditions of Permian coals of Pench, Kanhan, and Tawa Valley coalfields of Satpura Basin, Madhya Pradesh, India. Int J Coal Geol. 59(3–4):209–243. doi: 10.1016/j.coal.2004.02.002.
  • Singh V, Tiwari RS. 1982. Patterns of miofloras through Permo–Triassic transition in bore–hole RAD–2, east Raniganj Coalfield, west Bengal. Geophytology. 12:181–186.
  • Souza PA. 2006. Late Carboniferous palynostratigraphy of the Itararé Subgroup, northeastern Paraná Basin, Brazil. Rev Palaeobot Palynol. 138(1):9–29. doi: 10.1016/j.revpalbo.2005.09.004.
  • Souza PA, Boardman DR, Premaor E, Félix CM, Bender RR, Oliveira EJ. 2021. The vittatina costabilis zone revisited: new characterization and implications on the Pennsylvanian-Permian icehouse-to-greenhouse turnover in the Paraná Basin, western Gondwana. J S Am Earth Sci. 106:102968. doi: 10.1016/j.jsames.2020.102968.
  • Souza PA, Marques-Toigo M. 2003. An overview on the palynostratigraphy of the Upper Paleozoic strata of the Brazilian Paraná Basin. Rev Mus Argent Cienc Nat Nueva Ser. 5:205–214. doi: 10.22179/REVMACN.5.49.
  • Souza PA, Marques-Toigo M. 2005. Progress on the palynostratigraphy of the Permian strata in Rio Grande do Sul State, Paraná Basin, Brazil. An Acad Bras Ciênc. 77(2):353–365. doi: 10.1590/S0001-37652005000200012.
  • Spiekermann R, Jasper A, Bamford MK, Uhl D. 2022 23. A fresh look on the morphology of Azaniadendron Rayner: a ligulate lycopsid from the Permian of Gondwana. Rev Palaeobot Palynol. 307(307):104780. doi:10.1016/j.revpalbo.2022.104780.
  • Spiekermann R, Jasper A, Benício JRW, Guerra-Sommer M, Ricardi-Branco FS, Uhl D. 2020 27. Late palaeozoic lycopsids from the Paraná Basin in S-America – an historical overview. J S Am Earth Sci. 101:102615. doi:10.1016/j.jsames.2020.102615.
  • Spiekermann R, Uhl D, Benício JRW, Guerra-Sommer M, Jasper A. 2018. A remarkable mass-assemblage of lycopsid remains from the Rio Bonito Formation, lower Permian of the Paraná Basin, Rio Grande do sul, Brazil. Palaeobiodiv Palaeoenviron. 98(3):369–384. doi: 10.1007/s12549-018-0318-3.
  • Srivastava AK, Agnihotri D. 2009. Palaeobotanical perspective of Satpura Gondwana Basin, Madhya Pradesh, India. Earth Syst Sci. 2:580–595.
  • Srivastava AK, Agnihotri D. 2010. Upper Permian plant fossils assemblage of Bijori Formation: a case study of glossopteris flora beyond the limit of Raniganj Formation. J Geol Soc India. 76(1):47–62. doi: 10.1007/s12594-010-0082-0.
  • Srivastava AK, Agnihotri D. 2012. Scale leaves from the Barakar Formation of Satpura Gondwana Basin, Madhya Pradesh, India. Palaeobotanist. 61:177–188. doi: 10.54991/jop.2012.358.
  • Srivastava SC, Awatar R. 2002. Palynological assemblage from Motur clay bed of Satpura Gondwana Basin, Madhya Pradesh, India. Geophytology. 31(1and2):81–86.
  • Srivastava SC, Jha N. 1989. Palynostratigraphy of lower Gondwana sediments in Godavari Graben, Andhra Pradesh, India. Palaeobotanist. 37(22):199–209. doi: 10.54991/jop.1988.1620.
  • Srivastava SC, Jha N. 1990. Permian–Triassic palynofloral transition in Godavari Graben, Andhra Pradesh. Palaeobotanist. 38:92–97. doi: 10.54991/jop.1989.1643.
  • Srivastava SC, Jha N. 1991. Palynological dating of coal seams in Amavaram area, Khammam district, A.P., India. Geophytology. 20:161.
  • Srivastava SC, Jha N. 1992. Permian palynostratigraphy in Ramakrishnapuram area, Godavari Graben, Andhra Pradesh, India. Geophytology. 20(2):83–95.
  • Srivastava SC, Jha N. 1995. Palynostratigraphy and correlation of Permian-Triassic sediments in Budharam area, Godavari Graben, India. J Geol Soc India. 46:647–653.
  • Srivastava SC, Kar R. 2001. Palynological dating of some Permian outcrops from Iria Valley, Tatapani‐Ramkola Coalfield, M.P., India. Proceedings of National seminar on recent advances in Geology of coal and lignite basins of India, Calcutta., 1997. Geol Sur India, Spec Pub. 54:97–102.
  • Srivastava SC, Prakash A, Kar R. 1997. Palynology of Permian‐ Triassic sequence in iria nala, Tatapani‐Ramkola Coalfield, India. Palaeobotanist. 46(1, 2):75–80. doi: 10.54991/jop.1997.1318.
  • Srivastava SC, Prakash A, Sarate OS 1989. Palynology of the Talchir Formation from Betul Coalfield, Satpura Basin, India. Palaeobotanist. 37(1): 81–84.
  • Srivastava SC, Sarate OS. 1989. Palynostratigraphy of lower Gondwana sediments from Shobhapur block, Patherkhera Coalfield, Madhya Pradesh. Palaeobotanist. 37((1–3)):125–133. doi: 10.54991/jop.1988.1606.
  • Srivastava AK, Saxena A, Agnihotri D. 2012. Morphological and stratigraphical significance of lower Gondwana plant fossils of Mohpani coalfield, Satpura Gondwana basin, Madhya Pradesh. J Geol Soc India. 80(5):676–684. doi: 10.1007/s12594-012-0193-x.
  • Srivastava AK, Tewari R. 2002a. Two new types of megaspores from Permian Gondwana sequence of India. Permophiles. 39:28–31.
  • Srivastava AK, Tewari R. 2002b. A new gulate megaspore from Satpura Gondwana Basin. J Palaeontol Soc India. 47:95–96.
  • Srivastava AK, Tewari R. 2004. Megaspore assemblage from Pench Valley Coalfield, Madhya Pradesh, India. Geophytology. 34:57–64.
  • Tewari R, Mehrotra NC, Meena KL, Pillai SSK. 2009. Permian megaspores from Kuraloi area, Ib-River Coalfield, Mahanadi Basin, Orissa. J Geol Soc India. 74(6):669–678. doi: 10.1007/s12594-009-0183-9.
  • Tiwari RS, Awatar R. 1989. Sporae dispersae and correlation of Gondwana sediments in Johilla Coalfield, Son Valley Graben, Madhya Pradesh. Palaeobotanist. 37((1–3)):94–114. doi: 10.54991/jop.1988.1604.
  • Tiwari RS, Singh V. 1983. Miofloral transition at Raniganj–panchet boundary in east Raniganj Coalfield and its implication on Permian–Triassic time boundary. Geophytology. 13:227–234.
  • Tiwari RS, Tripathi A. 1992. Marker assemblage zones of spores and pollen species through Gondwana palaeozoic and Mesozoic sequence in India. Palaeobotanist. 40:194–236. doi: 10.54991/jop.1991.1773.
  • Tripathi A. 1986. Upper Permian palynofossils from the Rajmahal Basin, Bihar. Bull Geol Min Metallurgical Soc India. 54:265–271.
  • Tripathi A. 1989. Palynological evidence for the presence of upper Permian sediments in northern part of Rajmahal Basin. J Geol Soc India. 34:198–207.
  • Tripathi A, Bhattacharya D 2001. Palynological resolution of upper Permian sequence in Talchir Coalfield, Orissa; In: B DA, et al., editors, Proceedings of National Seminar on Recent Advances in Geology of Coal and Lignite Basins of India, Geol. Sur India, Kolkata. 54: 59–68.
  • Tripathi A, Vijaya Murthy S, Chakarborty B, Das DK, DAS DK. 2012. Stratigraphic status of coal horizon in Tatapani–Ramkola Coalfield, Chhattisgarh, India. J Earth Syst Sci. 121(2):537–557. doi: 10.1007/s12040-012-0161-2.
  • Uhl D, Jasper A, Abu Hamad AMD, Montenari M 2008. Permian and Triassic wildfires 897 and atmospheric oxygen levels. Proceed WSEAS Conferences Special Issues, Malta, 13, 179–187.
  • Uhl D, Jasper A, Schindler T, Wuttke M. 2010. First evidence of palaeo-wildfire in the early middle Triassic (early anisian) voltzia sandstone: the oldest post-Permian macroscopic evidence of wildfire discovered so far. Palaios. 25(12):837–842. doi: 10.2110/palo.2010.p10-012r.
  • Uhl D, Kerp H. 2003. Wildfires in the late palaeozoic of central Europe–the Zechstein (Upper Permian) of NW-Hesse (Germany). Palaeogeogr Palaeoclimat, Palaeoecol. 199(1–2):1–15. doi: 10.1016/S0031-0182(03)00482-6.
  • Uhl D, Lausberg S, Noll R, Stapf KR. 2004. Wildfires in the late palaeozoic of central Europe—an overview of the rotliegend (upper Carboniferous–lower Permian) of the saar–Nahe Basin (SW-Germany). Palaeogeogr Palaeoclimat, Palaeoecol. 207(1–2):23–35. doi: 10.1016/j.palaeo.2004.01.019.
  • Uhl D, Spiekermann R, Wuttke M, Poschmenn MJ, Jasper A. 2022. Wildfires during the Paleogene (late Eocene–late Oligocene) of the Neuwied Basin (W-Germany). Rev Palaeobot Palynol. 297:104565. doi: 10.1016/j.revpalbo.2021.104565.
  • Varshney H, Bhattacharya B. 2023. Implications of late palaeozoic postglacial marine transgressive‐regressive (T‐R) cycles recorded in the Talchir Formation, Son Valley Basin, peninsular India: a sequence stratigraphic paradigm. Geological J. 58(1):333–355. doi: 10.1002/gj.4596.
  • V., Vijaya. 2011. Palynostratigraphy of subsurface Upper Permian and Mesozoic succession, Rakshitpur area, Raniganj Coalfield, west Bengal. Palaeoworld. 20(1):61–74. doi: 10.1016/j.palwor.2010.01.001.
  • Vijaya TA, Roy A, Mitra S. 2012. Palynostratigraphy and age correlation of subsurface strata within the sub-basins in Singrauli Gondwana Basin, India. J Earth Syst Sci. 121(4):1071–1092. doi: 10.1007/s12040-012-0213-7.
  • Visscher H, Brinkhuis H, Dilcher D, Elsik W, Eshet Y, Looy C, Rampino M, Traverse A. 1996. The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc Natl Acad Sci USA. 93(5):2155–2158. doi: 10.1073/pnas.93.5.2155.
  • Xu Y, Uhl D, Zhang N, Zhao C, Qin S, Liang H, Su Y. 2020. Evidence of widespread wildfires in coal seams from the middle Jurassic of Northwest China and its impact on paleoclimate. Palaeogeogr Palaeoclimatol Palaeoecol. 559:109819. doi: 10.1016/j.palaeo.2020.109819.
  • Zhang Y, Zheng S, Singh KJ, Wang Y, Zhang S, Saxena A. 2022. Glossopterids survived end-Permian mass extinction in North Hemisphere. Glob Geol. doi: 10.3969/j.issn.1673-9736.2022.04.02.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.