78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Body size evolution of the Middle Jurassic-Early Cretaceous bivalves of Kutch, India

, , , , , , & show all
Received 24 Aug 2023, Accepted 26 Dec 2023, Published online: 09 Jan 2024

References

  • Ahmad AHM, Majid A. 2010. Genesis and diagenetic evolution of Habo Formation, Kachchh, Gujarat. J Geol Soc India. 76:331–344. doi:10.1007/s12594-010-0104-y.
  • Alberti M, Fürsich FT, Pandey DK. 2019. Sedimentology of a prograding delta complex: the Jurassic succession of the Wagad Uplift in the Kachchh Basin, western India. N Jb Geol und Paläonto, Abh. 292(1):1–24. doi:10.1127/njgpa/2019/0805.
  • Alroy J. 1998. Cope’s Rule and the dynamics of body mass evolution in North American fossil mammals. Sci. 280(5364):731–734. doi:10.1126/science.280.5364.731.
  • Arnold AJ, Kelly DC, Parker WC. 1995. Causality and Cope’s Rule: evidence from the planktonic foraminifera. J Paleontol. 69(2):203–210. doi:10.1017/S0022336000034557.
  • Atkinson JW, Wignall PB, Morton JD, Aze T, Hautmann M. 2019. Body size changes in bivalves of the family Limidae in the aftermath of the end-Triassic mass extinction: the Brobdingnag effect. Palaeontology. 62(4):561–582. doi:10.1111/pala.12415.
  • Baker J, Meade A, Pagel M, Venditti C. 2015. Adaptive evolution toward larger size in mammals. Proc Natl Acad Sci USA. 112(16):5093–5098. doi:10.1073/pnas.1419823112.
  • Bambach RK. 1993. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology. 19(3):372–397. doi:10.1017/S0094837300000336.
  • Bardhan S, Shome S, Bose PK, Ghosh G. 1989. Faunal crisis and marine regression across the Jurassic-Cretaceous boundary in Kutch, India. Mesozoic Research. 2(1):1–10.
  • Bardhan S, Shome S, Roy P. 2007. Biogeography of Kutch ammonites during the latest Jurassic (Tithonian) and a global paleobiogeographic overview. In: Landman N, Davis R Mapes R, editors. Cephalopods Present Past New Insights Fresh Perspect. Springer; p. 375–395. doi: 10.1007/978-1-4020-6806-5_17.
  • Behrensmeyer AK, Kidwell SM. 1985. Taphonomy’s contributions to paleobiology. Paleobiology. 11:105–119.
  • Behrensmeyer AK, Kidwell SM, Gastaldo RA. 2000. Taphonomy and paleobiology. Paleontol Soc Pap. 2(sp4):103–147. doi:10.1666/0094-8373(2000)26[103:TAP]2.0.CO;2.
  • Bell MA, Braddy S. 2012. Cope’s Rule in the Ordovician trilobite family Asaphidae (order Asaphida): patterns across multiple most parsimonious trees. Hist Biol. 24:223–230. doi: 10.1080/08912963.2011.616201.
  • Biswas SK. 1971. Notes on the geology of Kutch. Q J Geol Min. Metall. Soc. India. 43:223–236.
  • Biswas SK. 1980. Mesozoic rock stratigraphy of Kachchh. Q J Min. Metall. Soc. India. 49:1–52.
  • Biswas SK. 1987. Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics. 135(4):307–327. doi:10.1016/0040-1951(87)90115-6.
  • Biswas SK. 1991. Stratigraphy and sedimentary evolution of the Mesozoic basin of Kutch, western India. In: Tandon S, Pant C, and Casshyap S, editors. Stratigraphy and Sedimentary Evolution of Western India. Gyanodaya Prakashan, Nainital. p. 74–103.
  • Biswas SK. 2005. Tectonic style and sediment dynamics of rifted basins, their bearing on petroleum habitat-examples from Satpura and Kutch basins, India. Indian J Pet Geol. 14:1–29.
  • Biswas SK. 2016. Mesozoic and Tertiary stratigraphy of Kutch (Kachchh) A review. In: Thakkar M, editor. Recent Studies on the Geology of Kachchh. New Delhi India: Geological Society Special Publication; p. 6:1–24.
  • Bonner JT. 1988. The Evolution of Complexity by Means of Natural Selection. New Jersy: PrincetonPrinceton University Press.
  • Bonner JT. 2006. Why Size Matters: from Bacteria to Blue Whales. New Jersy: PrincetonPrinceton University Press.
  • Brown JH, Maurer BA. 1986. Body size, ecological dominance, and Cope’s Rule. Nat. 324(6094):248–250. doi:10.1038/324248a0.
  • Butler RJ, Goswami A. 2008. Body size evolution in Mesozoic birds: little evidence for Cope’s Rule. J Evol Biol. 21(6):1673–1682. doi:10.1111/j.1420-9101.2008.01594.x.
  • Calder WA. 1984. Size, Function, and Life History. Cambridge, MA: Harvard University Press; p. 431.
  • Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, Orme CDL, Purvis A. 2005. Multiple causes of high extinction risk in large mammal species. Sci. 309(5738):1239–1241. doi:10.1126/science.1116030.
  • Chen J, Song H, He W, Tong J, Wang F, Wu S. 2018. Size variation of brachiopods from the Late Permian through the Middle Triassic in south China: evidence for the Lilliput effect following the Permian-Triassic extinction. Palaeogeogr Palaeoclimatol Palaeoecol. 519:248–257. doi: 10.1016/j.palaeo.2018.07.013.
  • Cope ED. 1887. The Origin of the Fittest. New York. USA: Appleton and Co.
  • Cox LR. 1940. The Jurassic lamellibranch fauna of Kuchh (Cutch): Memoirs of the Geological Survey of India, Palaeontologia Indica. Series. 3(3):1–157.
  • Crampton JS, Cooper RA, Beu AG, Foote M, Marshall BA. 2010. Biotic influences on species duration: interactions between traits in marine molluscs. Paleobiology. 36(2):204–223. https://www.jstor.org/stable/40792286.
  • Crampton JS, Maxwell PA. 2000. Size: All it’s shaped up to be? Evolution of shape through the lifespan of the Cenozoic bivalve Spissatella (Crassatellidae). Geol Soc London Spec Publ. 177(1):399–423. doi:10.1144/GSL.SP.2000.177.01.27.
  • Depéret CJ. 1909. The Transformations of the Animal World. London: Kegan Paul, Trench, Trübner & Company Limited.
  • Fürsich FT, Alberti M, Pandey DK. 2013. Stratigraphy and palaeoenvironments of the Jurassic rocks of Kachchh—Field Guide: beringeria. Vol. 7. pp. 1–174.
  • Fürsich FT, Alberti M, Pandey DK. 2021. Palaeoecological analysis of maximum flooding zones from the Tithonian (Upper Jurassic) of the Kachchh Basin, western India. Facies. 67(7):1–27. doi:10.1007/s10347-020-00617-6.
  • Fürsich FT, Heinze M, Jaitly AK. 2000. Contributions to the Jurassic of Kachchh, western India. VIII. The bivalve fauna. Part IV. Subclass Heterodonta. Beringeria. 27:63–140.
  • Fürsich FT, Oschmann W. 1993. Shell beds as tools in basin analysis: the Jurassic of Kachchh, western India. J Geol Soc London. 150(1):169–185. doi:10.1144/gsjgs.150.1.0169.
  • Fürsich FT, Oschmann W, Jaitly AK. 1992. Hardgrounds, reworked concretion levels and condensed horizons in the Jurassic of western India: their significance for basin analysis. J Geol Soc. 149(3):313–331. doi:10.1144/gsjgs.149.3.0313.
  • Fürsich FT, Oschmann W, Jaitly AK, Singh IB. 1991. Faunal response to transgressive-regressive cycles: examples from the Jurassic of Western India. Palaeogeogr Palaeoclimatol Palaeoecol. 85(3–4):149–159. doi:10.1016/0031-0182(91)90155-K.
  • Fürsich FT, Pandey DK. 2003. Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Upper Jurassic-Lower Cretaceous of Kachchh, western India. Palaeogeogr Palaeoclimatol Palaeoecol. 193(2):285–309. doi:10.1016/S0031-0182(03)00233-5.
  • Fürsich FT, Pandey DK, Alberti M, Mukherjee D, Chauhan G. 2020. Stratigraphic architecture and palaeoenvironments in the Kachchh rift Basin during the Jurassic. 36th International Geological Congress-Field Trip Guide WR010. 43:1–146.
  • Fürsich FT, Pandey DK, Callomon JH, Jaitly AK, Singh IB. 2001. Marker beds in the Jurassic of the Kachchh Basin, Western India: their depositional environment and sequence stratigraphic significance. J Palaeontol Soc India. 46:173–198.
  • Fürsich FT, Pandey DK, Oschmann W, Jaitly AK, Singh IB. 1994. Ecology and adaptive strategies of corals in unfavourable environments: Examples from the Middle Jurassic of the Kachchh Basin, Western India. N Jb Geol und Paläonto, Abh. 194(2–3):269–303. doi:10.1127/njgpa/194/1994/269.
  • Fürsich FT, Singh IB, Joachimski M, Krumm S, Schlirf M, Schlirf S. 2005. Palaeoclimate reconstructions of the Middle Jurassic of Kachchh (western India): an integrated approach based on palaeoecological, oxygen isotopic, and clay mineralogical data. Palaeogeogr Palaeoclimatol Palaeoecol. 217(3–4):289–309. doi:10.1016/j.palaeo.2004.11.026.
  • Gingerich PD. 1980. Evolutionary patterns in early Cenozoic mammals. Annu Rev Earth Planet Sci. 8(1):407–424. doi:10.1146/annurev.ea.08.050180.002203.
  • Gombos AM, Powell WG, Norton IO. 1995. The tectonic evolution of western India and its impacts on hydrocarbon occurrence: an overview. Sediment Geol. 96(1–2):119–129. doi:10.1016/0037-0738(94)00129-I.
  • Gotanda KM, Correa C, Turcotte MM, Rolshausen G, Hendry AP. 2015. Linking macrotrends and microrates: re-evaluating microevolutionary support for Cope’s Rule. Evol. 69(5):1345–1354. doi:10.1111/evo.12653
  • Gould SJ. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. J Paleontol. 62(3):319–329. doi:10.1017/S0022336000059126.
  • Gould SJ. 1997. Cope’s rule as psychological artefact. Nature. 385(6613):199–200. doi:10.1038/385199a0.
  • Gould GC, MacFadden BJ. 2004. Gigantism, Dwarfism, and Cope’s Rule: “Nothing in Evolution Makes Sense without a Phylogeny. Bull Am Museum Nat Hist. 285:219–237. doi:10.1206/0003-0090(2004)285<0219:c>2.0.co;2.
  • Hallam A. 1986. The Pliensbachian and Tithonian extinction events. Nature. 319(6056):765–768. doi:10.1038/319765a0.
  • Hansen TF, Martins EP. 1996. Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution. 50(4):1404–1417. doi:10.2307/2410878.
  • Harnik PG. 2011. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proc Natl Acad Sci USA. 108(33):13594–13599. doi:10.1073/pnas.1100572108.
  • Heim NA, Knope ML, Schaal EK, Wang SC, Payne JL. 2015. Cope’s Rule in the evolution of marine animals. Sci. 347(6224):867–871. doi:10.1126/science.1260065.
  • Hickman CS. 2003. Evidence for abrupt Eocene-Oligocene molluscan faunal changes in the Pacific Northwest. In: Prothero, editor. From Greenhouse to Icehouse: The marine Eocene-Oligocene transition. New York: Columbia University Press; p. 71–87.
  • Hone DWE, Benton MJ. 2005. The evolution of large size: how does Cope’s Rule work? Trends Ecol Evol. 20(1):4–6. doi:10.1016/j.tree.2004.10.012.
  • Hone DWE, Keesey TM, Pisani D, Purvis A. 2005. Macroevolutionary trends in the Dinosauria: Cope’s Rule. J Evol Biol. 18:587–595. doi: 10.1111/j.1420-9101.2004.00870.x.
  • Hunt G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology. 32(4):578–601. doi:10.1666/05070.1
  • Hunt G. 2007. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc Natl Acad Sci USA. 104(47):18404–18408. doi:10.1073/pnas.0704088104.
  • Hunt G, Carrano MT. 2010. Models and methods for analyzing phenotypic evolution in lineages and clades. Paleontol Soc Pap. 16:245–269. doi: 10.1017/s1089332600001893.
  • Hunt G, Hopkins MJ, Lidgard S. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proc Natl Acad Sci USA. 112(16):4885–4890. doi:10.1073/pnas.1403662111.
  • Hunt G, Rabosky DL. 2014. Phenotypic evolution in fossil species: pattern and process. Annu Rev Earth Planet Sci. 42(1):421–441. doi:10.1146/annurev-earth-040809-152524.
  • Hunt G, Roy K. 2006. Climate change, body size evolution, and Cope’s Rule in deep-sea ostracodes. Proc Natl Acad Sci USA. 103(5):1347–1352. doi:10.1073/pnas.0510550103.
  • Hutchinson GE, MacArthur RH. 1959. A theoretical ecological model of size distributions among species. Am Nat. 93(869):117–125. doi:10.1086/282063.
  • Jablonski D. 1996. Body size and macroevolution. In: Jablonski D, Erwin DH Lipps JH, editors. Evolutionary Paleobiology. Chicago: University of Chicago Press; p. 256–289.
  • Jablonski D. 1997. Body-size evolution in Cretaceous molluscs and the status of Cope’s Rule. Nature. 385(16):250–252. doi:10.1038/385250a0
  • Jackson JBC, Jung P, Fortunato H. 1996. Paciphilia revisited: transisthmian evolution of the Strombina Group (Gastropoda: Columbellidae). In: Jackson JBC, Coates AG, and Budd AF, editors. Evolution and Environment in Tropical America. Chicago: University of Chicago Press; p. 234–270.
  • Jaitly AK. 2013. Comments on the Middle Jurassic pholadomyoids of Kachchh, western India. J Pal Soc India. 58(1):51–60.
  • Jaitly AK. 2017. Implication of the Middle Jurassic pholadomyoids of Kachchh in the palaeobiogeography of the Middle East and South Asia: A review. J Geol Soc India. 90(1):41–50. doi:10.1007/s12594-017-0662-3.
  • Jeffery CH. 2001. Heart urchins at the Cretaceous/Tertiary boundary: a tale of two clades. Paleobiology. 27(1):140–158. doi:10.1666/0094-8373(2001)027<0140:HUATCT>2.0.CO;2.
  • Kidwell SM, Bosence DWJ. 1991. Taphonomy and time-averaging of marine shelly faunas. In: Allison PA, and Briggs DEG, editors. Taphonomy: releasing the data locked in the fossil record. Topics in Geobiology. Vol 9. New York: Plenum Press; p. 115–209.
  • Kingsolver JG, Huey RB. 2008. Size, temperature, and fitness: three rules. Evol Ecol Res. 10:251–268.
  • Kingsolver JG, Pfennig DW. 2004. Individual-level selection as a cause of Cope’s Rule of phyletic size increase. Evol. 58(7):1608–1612. doi:10.1111/j.0014-3820.2004.tb01740.x.
  • Knouft JH, Page LM. 2003. The evolution of body size in extant groups of North American freshwater fishes: speciation, size distributions, and Cope’s Rule. Am Nat. 161(3):413–421. doi:10.1086/346133.
  • Kosnik MA, Jablonski D, Lockwook R, Novack-Gottshall PM. 2006. Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data-collection efforts. Palaios. 21(6):588–597. doi:10.2110/palo.2006.p06-012r.
  • Kowalewski M. 1996. Time-averaging, overcompleteness, and the geological record. J Geol. 104(3):317–326. doi:10.1086/629827.
  • Kowalewski M. 2002. The fossil record of predation: an overview of analytical methods. Paleontol Soc Pap. 8:3–42. doi: 10.1017/S1089332600001030.
  • Lockwood R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology. 31(4):578–590. doi:10.1666/0094-8373(2005)031[0578:BSEEAT]2.0.CO;2.
  • Maurer BA, Brown JH, Rusler RD. 1992. The micro and macro in body size evolution. Evolution. 46(4):939–953. doi:10.2307/2409748.
  • McKinney ML. 1990. Trends in body size evolution. In: McNamara KJ, editor. Evolutionary Trends. Tucson: Universityof Arizona Press; p. 75–118.
  • McNamara KJ. 1990. Echinoids. In: McNamara KJ, editor. Evolutionary trends. Tucson: University of Arizona Press; p. 205–231.
  • McShea DW. 1994. Mechanisms of large-scale evolutionary trends. Evolution. 48(6):1747–1763. doi:10.2307/2410505.
  • Moen DS. 2006. Cope’s Rule in cryptodiran turtles: do the body sizes of extant species reflect a trend of phyletic size increase? J Evol Biol. 19(4):1210–1221. doi:10.1111/j.1420-9101.2006.01082.x.
  • MolluscaBase. 2023. MolluscaBase. https://www.molluscabase.org;10.14284/448.
  • Monarrez PM, Heim NA, Payne JL. 2023. Reduced strength and increased variability of extinction selectivity during mass extinctions. R Soc Open Sci. 10(9):230795. doi:10.1098/rsos.230795.
  • Mukhopadhyay A, Paul S, Poddar A, Chattopadhyay D, Saha R, Basak R, Prasad S. 2023. Body size evolution of the Late Cretaceous bivalves from Ariyalur, Southern India. Cretac Res. 149:105570. doi: 10.1016/j.cretres.2023.105570.
  • Newell ND. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution. 3(2):103–124. doi:10.2307/2405545.
  • Novack-Gottshall PM. 2008. Ecosystem-wide body-size trends in Cambrian–Devonian marine invertebrate lineages. Paleobiology. 34(2):210–228. doi:10.1666/0094-8373(2008)034[0210:EBTICM]2.0.CO;2.
  • Novack-Gottshall PM, Lanier MA. 2008. Scale-dependence of Cope’s Rule in body size evolution of Paleozoic brachiopods. Proc Natl Acad Sci USA. 105(14):5430–5434. doi:10.1073/pnas.0709645105.
  • Opazo LF, Twitchett RJ. 2022. Bivalve body-size distribution through the Late Triassic mass extinction event. Paleobiology. 48(3):420–445. doi:10.1017/pab.2021.38
  • Ottens KJ, Dietl GP, Kelley PH, Stanford SD. 2012. A comparison of analyses of drilling predation on fossil bivalves: bulk- vs. taxon-specific sampling and the role of collector experience. Palaeogeogr Palaeoclimatol Palaeoecol. 319–320:84–92. doi: 10.1016/j.palaeo.2012.01.006.
  • Pagel M, O’Donovan C, Meade A. 2022. General statistical model shows that macroevolutionary patterns and processes are consistent with Darwinian gradualism. Nat Commun. 13(1). doi: 10.1038/s41467-022-28595-z.
  • Palmer AR. 1990. Predator size, prey size, and the scaling of vulnerability: hatching gastropods vs. barnacles. Ecology. 71(2):759–775. doi:10.2307/1940328.
  • Payne JL, Boyer AG, Brown JH, Finnegan S, Kowalewski M, Krause RA Jr, Lyons SK, McClain CR, McShea DW, Novack-Gottshall PM, et al. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc Natl Acad Sci USA. 106(1):24–27. doi:10.1073/pnas.0806314106.
  • Payne JL, Heim NA. 2020. Body size, sampling completeness, and extinction risk in the marine fossil record. Paleobiology. 46(1):23–40. doi:10.1017/pab.2019.43
  • Peters RH, Wassenberg K. 1983. The effect of body size on animal abundance. Oecologia. 60(1):89–96. doi:10.1007/BF00379325.
  • Piazza V, Duarte LV, Renaudie J, Aberhan M. 2019. Reductions in body size of benthic macroinvertebrates as a precursor of the early Toarcian (Early Jurassic) extinction event in the Lusitanian Basin, Portugal. Paleobiology. 45(2):296–316. doi:10.1017/pab.2019.11
  • Pietsch C, Gigliotti M, Anderson BM, Allmon WD. 2023. Patterns and processes in the history of body size in turritelline gastropods, Jurassic to Recent. Paleobiology. 20(4):621–641. doi:10.1017/pab.2023.7.
  • Price SA, Hopkins SS. 2015. The macroevolutionary relationship between diet and body mass across mammals. Biol J Linn Soc. 115(1):173–184. doi:10.1111/bij.12495.
  • Purvis A, Orme CDL. 2005. Evolutionary trends in body size. In: Carel, JC, Kelley, PA Christen, Y, editors. Deciphering Growth. Berlin, Heidelberg: Springer; p. p. 1–18. doi:10.1007/3-540-28902-x_1.
  • Raia P, Carotenuto F, Passaro F, Fulgione D, Fortelius M. 2012. Ecological specialization in fossil mammals explains Cope’s Rule. Am Nat. 179(3):328–337. doi:10.1086/664081.
  • Rai J, Jain S. 2013. Pliensbachian nannofossils from Kachchh: Implications on the earliest Jurassic transgressive event on the western Indian margin. Zitteliana. 53:105–120.
  • Raup DM, John Sepkoski J. 1986. Periodic extinction of families and genera. Sci. 231(4740):833–836. doi:10.1126/science.11542060
  • R Core Development Team. 2019. R: a language and environment for statistical computing. URL. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
  • Rensch B. 1948. Histological changes correlated with evolutionary changes of body size. Evolution. 2(3):218–230. doi:10.2307/2405381.
  • Roopnarine PD, Vermeij GJ. 2000. One species becomes two: the case of Chione cancellata, the resurrected C. elevata and a phylogenetic analysis of Chione. J Molluscan Stud. 66(4):517–534. doi:10.1093/mollus/66.4.517.
  • Roy K. 2008. Dynamics of body size evolution. Sci. 321(September):1451–1452. doi:10.1126/science.1163097.
  • Roy A, Bardhan S, Das S, Mondal S, Mallick S. 2012. Systematic revision and palaeobiogeography of Perisphinctes Waagen (Ammonoidea) from the Oxfordian of Kutch, India: stratigraphic and evolutionary implications. Palaeoworld. 21(3–4):167–192. doi:10.1016/j.palwor.2012.10.001.
  • Roy K, Jablonski D, Martien KK. 2000. Invariant size – frequency distributions along a latitudinal gradient in marine bivalves. Proc Natl Acad Sci USA. 97(24):13150–13155. doi:10.1073/pnas.97.24.13150.
  • Rudra P, Bardhan S. 2006. Status of “Trigonia ventricosa” (Bivalvia) from the Upper Jurassic-Lower Cretaceous of Kutch, western India: Kitchin’s unfinished synthesis. Cretac Res. 27(5):611–628. doi:10.1016/j.cretres.2005.09.002.
  • Rudra P, Bardhan S, Shome S. 2007. Phylogeny of the Late Jurassic-Early Cretaceous subgenus Eselaevitrigonia (Bivalvia) of Kutch, India, and palaeobiogeographic constraints. J Paleontol. 81(5):1066–1079. doi:10.1666/pleo03-024.1.
  • Saha R, Paul S, Mondal S, Bardhan S, Das SS, Saha S, Sarkar D. 2021. Gastropod drilling predation in the upper Jurassic of Kutch, India. Palaios. 36(9):301–312. doi:10.2110/PALO.2020.072.
  • Salamon MA, Brachaniec T, Kołbuk D, Saha A, Gorzelak P. 2021. Shared patterns in body size declines among crinoids during the Palaeozoic extinction events. Sci Rep. 11(1):20351. doi:10.1038/s41598-021-99789-6.
  • Sarkar D, Paul S, Saha R, Bardhan S, Rudra P. 2022. Body size trends in Trigoniida bivalves from the Mesozoic Kutch, India. Palaios. 37(4):89–103. doi:10.2110/palo.2020.046.
  • Schmidt-Nielsen K. 1984. Scaling: why is animal size so important? Cambridge: Cambridge University Press.
  • Sheldon PR. 1996. Plus ça change — a model for stasis and evolution in different environments. Palaeoecology. 127(1–4):209–227. doi:10.1016/S0031-0182(96)00096-X.
  • Sheldon PR, Lees DR, Edwards D. 1993. Making sense of microevolutionary patterns. Evolutionary Patterns Processes. 14:19–31.
  • Shome S, Bardhan S, De S. 2005. Record of Tithopeltoceras Arkell (Ammonoidea) from the Late Tithonian of Kutch, India: its stratigraphic and paleobiogeographic significance. J Paleontol. 79(3):619–624. doi:10.1666/0022-3360(2005)079<0619:ROTAAF>2.0.CO;2.
  • Sigurdsen A, Hammer, Ø. 2016. Body size trends in the Ordovician to earliest Silurian of the Oslo Region. Palaeogeogr Palaeoclimatol Palaeoecol. 443:49–56. doi: 10.1016/j.palaeo.2015.11.038.
  • Simpson GG. 1953. The Major Features of Evolution. New York: Columbia University Press.
  • Singh IB. 1989. Dhosa Oolite—a transgressive condensation horizon of Oxfordian age in Kachchh, western India. J Geol Soc India. 34:152–160.
  • Singh CSP, Jaitly AK, Pandey DK. 1982. First report of some Bajocian-Bathonian (Middle Jurassic ammonoids and the age of the oldest sediments from Kachchh. W India Newsl Stratigr. 11(1):37–40. doi:10.1127/nos/11/1982/37.
  • Smith FA. 1992. Evolution of body size among woodrats from Baja California, Mexico. Funct Ecol. 6(3):265–273. doi:10.2307/2389516.
  • Smith FA, Boyer AG, Brown JH, Costa DP, Dayan T, Ernest SKM, Evans AR, Fortelius M, Gittleman JL, Hamilton MJ, et al. 2010. The evolution of maximum body size of terrestrial mammals. Sci. 330(6008):1216–1220. doi:10.1126/science.1194830.
  • Smith FA, Brown JH, Haskell JP, Lyons SK, Alroy J, Charnov EL, Dayan T, Enquist BJ, Morgan Ernest SK, Hadly EA, et al. 2004. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. Am Nat. 163(5):672–691. doi:10.1086/382898.
  • Smith FA, Payne JL, Heim NA, Balk MA, Finnegan S, Kowalewski M, Lyons SK, Mcclain CR, McShea DW, Novack-Gottshall PM, et al. 2016. Body size evolution across the Geozoic. Annu Rev Earth Planet Sci. 44(1):523–553. doi:10.1146/annurev-earth-060115-012147.
  • Stanley SM. 1973. An explanation for Cope’s rule. Evolution. 1:1–26. doi: 10.2307/2407115.
  • Stanley SM. 1986. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the Western Atlantic bivalve fauna. Baltimore Palaios. 1(1):17–36. doi:10.2307/3514456.
  • Troyer EM, Betancur-R R, Hughes LC, Westneat M, Carnevale G, White WT, Pogonoski JJ, Tyler JC, Baldwin CC, Ortí G, et al. 2022. The impact of paleoclimatic changes on body size evolution in marine fishes. Proc Natl Acad Sci. 119(29):e2122486119. doi:10.1073/pnas.2122486119.
  • Turner DD. 2009. How much can we know about the causes of evolutionary trends? Biol Philos. 24(3):341–357. doi:10.1007/s10539-008-9139-5
  • Twitchett RJ. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr Palaeoclimatol Palaeoecol. 252(1–2):132–144. doi:10.1016/j.palaeo.2006.11.038.
  • Vermeij GJ, Dietl GP, Reid DG. 2008. The trans-Atlantic history of diversity and body size in ecological guilds. Ecology. 89(11):S39–S52. doi:10.1890/07-0663.1.
  • Waller JT, Svensson EI. 2017. Body size evolution in an old insect order: no evidence for Cope’s Rule in spite of fitness benefits of large size. Evolution (NY). 71(9):2178–2193. doi:10.1111/evo.13302
  • World Register of Marine Species. https://www.marinespecies.orgatVLIZ;10.14284/170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.