Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 28, 2015 - Issue 1
246
Views
14
CrossRef citations to date
0
Altmetric
Articles

Investigations on Thermal Conductivity of Carbon Nanotubes Reinforced Composites

, , &
Pages 37-57 | Received 26 Nov 2012, Accepted 22 Apr 2013, Published online: 31 Jul 2014

REFERENCES

  • T. S.Gates, G. M.Odegard, S. J. V.Frankland, and T. C.Clancy, Computational Materials: Multi-Scale Modeling and Simulation of Nanostructured Materials, Compos. Sci. Technol., vol. 65, pp. 2416–2434, 2005.
  • S.Ramakrishna, J.Mayer, E.Wintermantel, and K. W.Leong, Biomedical Applications of Polymer-Composite Materials: A Review, Compos. Sci. Technol., vol. 61, pp. 1189–1224, 2001.
  • S.Iijima, Helical Microtubules of Graphitic Carbon, Nature, vol. 354, pp. 56–58, 1991.
  • H. J.Dai, Carbon Nanotubes: Opportunities and Challenges, Surface Sci., vol. 500, pp. 218–241, 2002.
  • Y.She, G.Chen, and D.Wu, Fabrication of Polyethylene/Graphite Nanocomposite from Modified Expanded Graphite, Polymer Int., vol. 56, pp. 679–685, 2007.
  • R. F.Gibson, E. O.Ayorinde, and Y. -F.Wen, Vibrations of Carbon Nanotubes and Their Composites: A Review, Compos. Sci. Technol., vol. 67, pp. 1–28, 2007.
  • C.Guthy, F.Du, S.Brand, K. I.Winey, and J. E.Fischer, Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites, J. Heat Transf., vol. 9, pp. 1096–1099, 2007.
  • P.Pötschke, T. D.Fornes, and D. R.Paul, Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites, Polymer, vol. 43, pp. 3247–3255, 2002.
  • C. W.Nan, G.Liu, Y.Lin, and M.Li, Interface Effect on Thermal Conductivity of Carbon Nanotube Composites, Appl. Phys. Lett., vol. 85, pp. 3549–3551, 2004.
  • A.Moisala, Q.Li, I. A.Kinloch, A. H.Windle, Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites, Compos. Sci. Technol., vol. 66, pp. 1285–1288, 2006.
  • D. H.Martin, Thermal Conductivity of CNT Reinforced Polymer Composite Materials, Adv. Phys., vol. 53, pp. 39–99, 1965.
  • R.Pokrop, I.Kulszewicz-Bajer, I.Wielgus, M.Zagorska, D.Albertini, S.Lefrant, G.Louarn, and A.Pron, Electrochemical and Raman Spectroelectrochemical Investigation of Single-Wall Carbon Nanotubes–Polythiophene Hybrid Materials, Synth. Met., vol. 159, pp. 919–924, 2009.
  • M. D.Bigg, Thermal Conductivity of Heterophase Polymer Compositions, Adv. Polym. Sci., vol. 119, pp. 1–30, 1995.
  • H.Zhou, S.Zhang, and M.Yang, The Effect of Heat-Transfer Passages on the Effective Thermal Conductivity of High Filler Loading Composite Materials, Compos. Sci. Technol., vol. 67, pp. 1035–1040, 2007.
  • J.Zeng, R.Fu, S.Agathopoulos, S.Zhang, X.Song, and H.He, Numerical Simulation of Thermal Conductivity of Particle Filled Epoxy Composites, J. Electron. Packag., vol. 131, pp. 041006-1–041006-7, 2009.
  • J.Wang, J. K.Carson, M. F.North, and D. J.Cleland, A New Structural Model of Effective Thermal Conductivity for Heterogeneous Materials with Co-Continuous Phases, Int. J. Heat Mass Transf., vol. 51, pp. 2389–2397, 2008.
  • E.Lizundia, A.Oleaga, A.Salazar, and J. R.Sarasua, Nano- and Microstructural Effects on Thermal Properties of Poly (L-Lactide) Multi-Wall Carbon Nanotube Composites, Polymer, vol. 53, pp. 2412–2421, 2012.
  • L.Nottale and Ch.Auffray, Scale Relativity Theory and Integrative Systems Biology: 1, Prog. Biophys. Mol. Bio., vol. 97, pp. 115–157, 2008.
  • L. Nottale, Scale Relativity and Fractal Space-Time: Theory and Applications, First International Conference on the Evolution and Development of the Universe, Paris, October8–9, 2008.
  • L.Notalle, Scale Relativity: A Fractal Matrix for Organization in Nature, Electron. J. Theor. Phys., vol. 4, pp. 15–102, 2007.
  • I.Casian Botez, M.Agop, P.Nica, V.Paun, and G. V.Munceleanu, Conductive and Convective Types Behaviors at Nano-Time Scales, J. Comput. Theor. Nanosci., vol. 7, pp. 2271–2280, 2010.
  • M.Agop, N.Forna, I.Casian Botez, and C.Bejenariu, New Theoretical Approach of the Physical Processes in Nanostructures, J. Comput. Theor. Nanosci., vol. 5, pp. 483–489, 2008.
  • Z. Zhang, Nano-Microscale Heat Transfer, pp. 25–51, McGraw Hill, New York, 2007.
  • H. W. M. Rohsenow, J. P. Hartnett, Y. I. Cho, Handbook of Heat Transfer, Chap. 1, Basic concept of heat transfer, McGraw Hill, New York, 1998.
  • J. S.Wang, J.Wang, and J. T.Lu, Quantum Thermal Transport in Nanostructures, Eur. Phys. J.B, vol. 62, pp. 381–404, 2008.
  • G.Chen, Particularities of Heat Conduction in Nanostructures, J. Nanopart. Res., vol. 2, pp. 199–204, 2000.
  • X.Wang and X. J.Xu, Thermal Conductivity of Nanoparticle–Fluid Mixture, J. Thermophys. Heat Transf., vol. 13, pp. 474–480, 1999.
  • P.Keblinski, S. R.Phillpot, S. U. S.Choi, and J. A.Eastman, Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), Int. J. Heat Mass. Transf., vol. 45, pp. 855–863, 2002.
  • H. E.Patel, S. K.Das, T.Sundararajan, A. S.Nair, B.George, and T.Pradeep, Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects, Appl. Phys. Lett., vol. 83, pp. 2931–2933, 2003.
  • A. A.Minea, Experimental and Numerical Analysis of Heat Transfer in a Closed Enclosure, Metalurgia, vol. 51, pp. 199–202, 2012.
  • M.Agop, P.Ioannou, P.Nica, C.Radu, A.Alexandru, and P.Vizureanu, Fractal Characteristics of the Solidification Process, Mater. Trans., vol. 45, pp. 972–975, 2004.
  • P.Vizureanu and M.Agop, A Theoretical Approach of the Heat Transfer in Nanofluids, Mater. Trans., vol. 48, pp. 3021–3023, 2007.
  • M.Agop, P.Ioannou, D.Luchian, P.Nica, and C.Radu, Dendritic Morphogenesis by Means of a Fractal, Mater. Trans., vol. 45, pp. 1528–1534, 2004.
  • O.Manca, A. A.Minea, S.Nardini, and S.Tamburrino, Numerical Investigation on Convective Heat Transfer in High Temperature Solar Receiver, Environ. Eng. Manag., vol. 10, pp. 1467–1475, 2011.
  • V.Bianco, O.Manca, S.Nardini, and A. A.Minea, Analysis and Forecasting of Nonresidential Electricity Consumption in Romania, Appl. Energy, vol. 87, pp. 3584–3590, 2010.
  • A. A.Minea, Simulation of Heat Transfer Processes in an Unconventional Furnace, J. Eng. Thermophys., vol. 19, pp. 31–38, 2010.
  • A. A.Minea, An Experimental Method to Decrease Heating Time in a Commercial Furnace, Exp. Heat Transf., vol. 23, pp. 175–184, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.