Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 31, 2018 - Issue 2
142
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Experimental study and large Eddy simulation of a coaxial jet with perforated obstacles to control thermal mixing characteristics

, , &

References

  • International Atomic Energy Agency (IAEA), Liquid Metal Cooled Reactors: Experience in Design and Operation, Austria: International Atomic Energy Agency (IAEA), pp. 12, 2007.
  • D. Lu, Q. Cao, J. Lv, and Y. Xiao, Experimental study on three-dimensional temperature fluctuation caused by coaxial-jet flows, Nucl. Eng. Des., vol. 243, pp. 234–242, 2012.
  • S. J. Jang and H. J. Sung, Effect of inflow pulsation on a turbulent coaxial jet, Int. J. Heat Fluid Flow, vol. 31, pp. 351–367, 2010.
  • G. Balarac, M. Si-Ameur, M. Lesieur, and O. M´etais, Direct numerical simulations of high velocity ratio coaxial jets: mixing properties and influence of upstream conditions, J. Turbulence, vol. 8, pp. 22, 2007.
  • B. Kok, M. Firat, H. F. Oztop, and Y. Varol, A numerical study on thermal mixing in narrow channels inserted rectangular bodies, Int. Commun. Heat Mass Transfer, vol. 44, pp. 69–76, 2013.
  • B. Kok, Y. Varol, H. F. Oztop, and A. Koca, Analysis of thermal mixing in circle shaped body inserted inclined channel, Exp. Thermal Fluid Sci., vol. 68, pp. 1–10, 2015.
  • B. Kok, M. Uyar, Y. Varol, A. Koca, and H. F. Oztop, Analyzing of thermal mixing phenomena in a rectangular channel with twin jets by using artificial neural network, Nucl. Eng. Des., vol. 265, pp. 554–565, 2013.
  • Y. Varol, B. Kok, H. F. Oztop, and I. Turkbay, An experimental study on thermal mixing in a square body inserted inclined narrow channels, Int. Commun. Heat Mass Transfer, vol. 39, pp. 1245–1252, 2012.
  • Y. Varol, B. Kok, H. Ayhan, and H. F. Oztop, Experimental study and Large Eddy Simulation of thermal mixing phenomena of a parallel jet with perforated obstacles, Int. J. Thermal Sci., vol. 111, pp. 1–17, 2017.
  • L. W. Jin and K. C. Leong, Pressure drop and friction factor of steady and oscillating flows in open-cell perforated media, Transp Perforated Med., vol. 72, pp. 37–52, 2008.
  • A. M. Hayes, J. A. Khan, A. H. Shaaban, and I. G. Spearing, The thermal modeling of a matrix heat exchanger using a perforated medium and the thermal nonequilibrium model, Int. J. Thermal Sci., vol. 47, pp. 1306–1315, 2008.
  • K. Hooman and H. Gurgenci, Effects of viscous dissipation and boundary conditions on forced convection in a channel occupied by a saturated perforated medium, Transp Perforated Med., vol. 68, pp. 301–319, 2007.
  • K. Hooman, H. Gurgenci, and A. A. Merrikh, Heat transfer and entropy generation optimization of forced convection in perforated-saturated ducts of rectangular cross-section, Int. J. Heat. Mass Transf., vol. 50, pp. 2051–2059, 2007.
  • P. Jiang and X. Lu, Numerical simulation and theoretical analysis of thermal boundary characteristics of convection heat transfer in perforated media, Int. J. Heat Fluid Flow, vol. 28, pp. 1144–1156, 2007.
  • S. J. Wang and A. S. Mujumdar, Flow and mixing characteristics of multiple and multi-set opposing jets, Chem. Eng. Process., vol. 46, pp. 703–712, 2007.
  • S. J. Wang, S. Devahastin, and A. S. Mujumdar, A numerical investigation of some approaches to improve mixing in laminar confined impinging streams, Appl. Thermal Eng., vol. 25, pp. 253–269, 2005.
  • R. K. Chandran, I. Banerjee, G. Padmakumar, and K. S. Reddy, Numerical analysis of thermal striping phenomena using a two jet water model, Eng. App. Comp. Fluid Mech., vol. 4, pp. 209–221, 2010.
  • E. Y. Jung, S. H. Oh, D. H. Lee, K. M. Kim, and H. H. Cho, Effect of impingement jet on the full-coverage film cooling system with double layered wall, Exp. Heat Transfer, vol. 30, pp. 544–562, 2017.
  • J. M. Jha, S. V. Ravikumar, I. Sarkar, S. K. Pal, and S. Chakraborty, Jet impingement cooling of a hot moving steel plate: an experimental study, Exp. Heat Transfer, vol. 29, pp. 615–631, 2016.
  • J. H. Jung and G. J. Yoo, Analysis of unsteady turbulent triple jet flow with temperature difference, J. Nucl. Sci. Technol., vol. 41, pp. 931–942, 2004.
  • Q. Cao, D. Lu, and J. Lv, Numerical investigation on temperature fluctuation of the parallel triple – jet, Nucl. Eng. Des., vol. 249, pp. 82–89, 2012.
  • M. Nishimura, A. Tokuhiro, N. Kimura, and H. Kamide, Numerical study on mixing of oscillating quasi – planar jets with low Reynolds number turbulent stress and heat flux equation models, Nucl. Eng. Des., vol. 202, pp. 77–95, 2000.
  • M. Nishimura and N. Kimura, URANS computations for an oscillatory non – isothermal triple – jet using k - ε and second moment closure turbulence models, Int. J. Numer. Meth. Fluids, vol. 43, pp. 1019–1044, 2003.
  • Q. Xiang, Z. Dao-Xiang, L. Zhi-Ming, and L. Yu-Lu, Turbulent mixing and evolution in a stably stratified flow with a temperature step, J. Hydrodyn., vol. 21, pp. 84–92, 2009.
  • S. Suyambazhahan, S. K. Das, and T. Sundararajan, Numerical study of flow and thermal oscillations in buoyant twin jets, Int. Commun. Heat Mass Transfer, vol. 34, pp. 248–258, 2007.
  • H. Ayhan and C. N. Sökmen, CFD modeling of thermal mixing in a T-junction geometry using LES model, Nucl. Eng. Des., vol. 253, pp. 183–191, 2012.
  • D. Tenchine, S. Vandroux, V. Barthel, and O. Cioni, Experimental and numerical studies on mixing jets for sodium cooled fast reactors, Nucl. Eng. Des., vol. 263, pp. 263–272, 2013.
  • B. Kok, Y. Varol, H. Ayhan, and H. F. Oztop, Experimental and computational analysis of thermal mixing characteristics of a coaxial jet, Exp. Thermal Fluid Sci., vol. 82, pp. 276–286, 2017.
  • B. Kok, Y. Varol, H. Ayhan, H. F. Oztop, and S. G. Demiryurek, Experimental investigation of thermal-mixing phenomena of a coaxial jet with cylindrical obstacles, J Thermophys Heat Transfer. Article in Advance, 2017. DOI: 10.2514/1.T5238.
  • ANSYS Fluent 12 Users Guide, April 2009. Available from: (https://tr.scribd.com/document/81970439/Ansys-Fluent-12-Users-Guide)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.