Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 31, 2018 - Issue 6
240
Views
0
CrossRef citations to date
0
Altmetric
Articles

Characterization of heat flow in silicon nanowire arrays for efficient thermoelectric power harvesting

, , &
Pages 470-481 | Received 25 Jul 2017, Accepted 20 Feb 2018, Published online: 08 Mar 2018

References

  • K. V. Selvan and M. S. M. Ali. “Micro-scale energy harvesting devices: review of methodological performances in the last decade,” Renewable Sustainable Energy Rev., vol. 54, pp. 1035–1047, 2016.
  • J. A. Paradiso and T. Starner. “Energy scavenging for mobile and wireless electronics,” IEEE Pervasive Comput., vol. 4, pp. 18–27, 2005.
  • L. Francioso, et al. “Flexible thermoelectric generator for ambient assisted living wearable biometric sensors,” J. Power Sour., vol. 196, pp. 3239–3243, 2011.
  • M. Singh, et al. “Fabrication of single slope condensing cover coupled with thermoelectric refrigeration based cooling chamber,”. Int. J. Thermal Technol., vol. 6, pp. 1, 2016.
  • N. Tsujii and T. Mori. “High thermoelectric power factor in a carrier-doped magnetic semiconductor CuFeS2,” Appl. Phys. Express, vol. 6, pp. 043001, 2013.
  • B. N. Pantha, I.-w. Feng, K. Aryal, J. Li, J.-Y. Lin, and H.-X. Jiang, “Erbium-doped AlInGaN alloys as high-temperature thermoelectric materials,”. Appl. Phys. Express, vol. 4, pp. 051001, 2011.
  • Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida. “Thermoelectric power enhancement of PEDOT: PSS in high humidity conditions,” Appl. Phys. Express, vol. 7, pp. 031601, 2014.
  • Y. Nakai, et al. “Giant seebeck coefficient in semiconducting single-wall carbon nanotube film,” Appl. Phys. Express, vol. 7, pp. 025103, 2014.
  • H. J. Goldsmid. “Bismuth telluride and its alloys as materials for thermoelectric generation,” Materials vol. 7, pp. 2577–2592, 2014.
  • Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens. Thermophysical properties of matter - the TPRC data series. Volume 1. Thermal conductivity - metallic elements and alloys Vol. 1, Virginia, USA: Defense Technical Information Center (DTIC), 1970.
  • E. Krali and Z. A. Durrani. “Seebeck coefficient in silicon nanowire arrays,” Appl. Phys. Lett., vol. 102, pp. 143102, 2013.
  • W. Kim. “Thermal transport in individual thermoelectric nanowires: a review,” Mater. Res. Innovations, vol. 15, pp. 375–385, 2011.
  • M. Park and Y.-S. Kim. “Lattice thermal conductivity of pristine si nanowires: classical nonequilibrium molecular dynamics study,” Nanoscale Microscale Thermophys. Eng., vol. 21, pp. 278–286, 2017.
  • P. Vizureanu, N. Cimpoesu, V. Radu, and M. Agop. “Investigations on thermal conductivity of carbon nanotubes reinforced composites,” Exp Heat Transfer, vol. 28, pp. 37–57, 2015.
  • R. Metz, et al. “Carbon nanotube-epoxy composites: the role of acid treatment in thermal and electrical conductivity,” Exp Heat Transfer, vol. 30, pp. 66–76, 2017.
  • S. Abbasi, S. M. Zebarjad, S. H. N. Baghban, and A. Youssefi. “Comparison between experimental and theoretical thermal conductivity of nanofluids containing multi-walled carbon nanotubes decorated with TiO2 nanoparticles,” Exp Heat Transfer, vol. 29, pp. 781–795, 2016.
  • A. Minnich, M. Dresselhaus, Z. Ren, and G. Chen. “Bulk nanostructured thermoelectric materials: current research and future prospects,” Energy Environ. Sci., vol. 2, pp. 466–479, 2009.
  • A. I. Hochbaum, et al. “Enhanced thermoelectric performance of rough silicon nanowires,” Nature, vol. 451, pp. 163–167, 2008.
  • Y. Pan, et al. “Significant thermal conductivity reduction of silicon nanowire forests through discrete surface doping of Germanium,” Appl. Phys. Lett., vol. 106, pp. 093102, 2015.
  • G. Pennelli. “Top-down fabrication of silicon nanowire devices for thermoelectric applications: properties and perspectives,” Eur. Phys. J. B: Condensed Matter Complex Syst., vol. 88, pp. 1–12, 2015.
  • J. H. Oh, M. Shin, and M.-G. Jang. “Phonon thermal conductivity in silicon nanowires: the effects of surface roughness at low temperatures,” J. Appl. Phys. vol. 111, pp. 044304, 2012.
  • B. Xu, “Si/SiGe thermoelectric generator,” PhD, Imperial College London, 2015.
  • S. Kasap. Thermoelectric Effects in Metals: thermocouples, Canada: Department of Electrical Engineering, University of Saskatchewan, 2001.
  • K. Lew and S. D. Hutagalung. “Silicon nanowire transistor fabricated by AFM nanolithography followed by wet chemical etching process,” Int. J. Nanosci., vol. 9, pp. 289–293, 2010.
  • A. R. Abramson, et al. “Fabrication and characterization of a nanowire/polymer-based nanocomposite for a prototype thermoelectric device,” J. Microelectromech. Syst. vol. 13, pp. 505–513, 2004.
  • Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele. “Metal-assisted chemical etching of silicon: a review,” J. Adv. Mater., vol. 23, pp. 285–308, 2011.
  • J. Wang, et al. State-of-the-Art Program on Compound Semiconductors 49 (SOTAPOCS 49)-And-Nitrides and Wide-Bandgap Semiconductors for Sensors, Photonics, and Electronics 9 Vol. 16, New Jersey, USA: The Electrochemical Society, 2008.
  • I. Ferrer, P. Díaz-Chao, A. Pascual, and C. Sánchez. “Hysteresis-like behaviour of the thermoelectric voltage in photovoltaic materials,” Thin Solid Films, vol. 511, pp. 177–181, 2006.
  • A. Tiwari and B. Raj. Materials and failures in MEMS and NEMS. John Wiley & Sons, Massachusetts, USA, 2015.
  • C. J. Cremers, H. A. Fine, and H. A. Fine. Thermal Conductivity, New York, USA: Springer, 1990.
  • J. Baxter, et al. “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. vol. 2, pp. 559–588, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.