Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 33, 2020 - Issue 6
351
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Experiments to compare the dynamics and thermal impact of single vapor bubble subjected to upward and downward flow boiling configurations

&
Pages 487-509 | Received 22 Jun 2019, Accepted 28 Aug 2019, Published online: 03 Sep 2019

References

  • F. C. Gunther, “Photographic study of surface-boiling heat transfer to water with forced convection,” Jet Propuls. Lab. ASME., vol. 73, pp. 115–124, 1951.
  • E. L. Bibeau and M. Salcudeant, “A study of bubble ebullition in forced- convective subcooled nucleate boiling at low pressure,” Int. J. Heat Mass Transf., vol. 37, pp. 2245–2259, 1994. DOI: 10.1016/0017-9310(94)90367-0.
  • W. G. J. Van Helden, C. W. M. Van Der Geld, and P. G. M. Boot, “Forces on bubbles growing and detaching in flow along a vertical wall,” Int. J. Heat Mass Transf., vol. 38, pp. 2075–2088, 1995. DOI: 10.1016/0017-9310(94)00319-Q.
  • V. Prodanovic, D. Fraser, and M. Salcudean, “Bubble behavior in subcooled flow boiling of water at low pressures and low flow rates,” Int. J. Multiph. Flow., vol. 28, pp. 1–19, 2002. DOI: 10.1016/S0301-9322(01)00058-1.
  • T. Okawa, T. Ishida, I. Kataoka, and M. Mori, “An experimental study on bubble rise path after the departure from a nucleation site in vertical upflow boiling,” Nucl. Eng. Des., vol. 29, pp. 287–294, 2005. DOI: 10.1016/j.nucengdes.2005.02.012.
  • T. Okawa, T. Ishida, I. Kataoka, and M. Mori, “On the rise paths of single vapor bubbles after the departure from nucleation sites in subcooled upflow boiling,” Int. J. Heat Mass Transf., vol. 48, pp. 4446–4459, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.05.026.
  • I. Chu, H. C. No, and C. Song, “Bubble lift-off Diameter and nucleation frequency in vertical subcooled boiling flow,” J. Nucl. Sci. Technol., vol. 48, pp. 936–949, 2017. DOI: 10.1080/18811248.2011.9711780.
  • R. Ahmadi, T. Ueno, and T. Okawa, “Bubble dynamics at boiling incipience in subcooled upward flow boiling,” Int. J. Heat Mass Transf., vol. 55, pp. 488–497, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.09.050.
  • S. Li, S. Tan, C. Xu, P. Gao, and L. Sun, “An experimental study of bubble sliding characteristics in narrow channel,” Int. J. Heat Mass Transf., vol. 57, pp. 89–99, 2013. DOI: 10.1016/j.ijheatmasstransfer.2014.12.026.
  • Y. Cao, Z. Kawara, T. Yokomine, and T. Kunugi, “Visualization study on bubble dynamical behavior in subcooled flow boiling under various subcooling degree and flowrates,” Int. J. Heat Mass Transf., vol. 93, pp. 839–852, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.10.053.
  • P. Guan, L. Jia, L. Yin, and Z. Tan, “Effect of bubble contact diameter on bubble departure size in flow boiling,” Exp. Heat Transf, vol. 29, pp. 37–52, 2016. DOI: 10.1080/08916152.2014.926433.
  • P. Goel, A. K. Nayak, P. Ghosh, and J. B. Joshi, “Experimental study of bubble departure characteristics in forced convective subcooled nucleate boiling,” Exp. Heat Transf, vol. 31, pp. 194–218, 2018. DOI: 10.1080/08916152.2017.1397821.
  • A. Candan, B. Markal, O. Aydin, and M. Avci, “Saturated flow boiling characteristics in single rectangular minichannels: effect of aspect ratio,” Exp. Heat Transf, vol. 31, pp. 531–551, 2018. DOI: 10.1080/08916152.2018.1463305.
  • B. Markal, A. Candan, and O. Aydin, “Flow boiling characteristics in a novel minichannel with a step on each corner,” Exp. Heat Transf, vol. 6152, 2019. DOI: 10.1080/08916152.2019.1569178.
  • A. Lucic, M. Emans, F. Mayinger, and C. Zenger, “Interferometric and numerical study of the temperature field in the boundary layer and heat transfer in subcooled flow boiling,” Int. J. Heat Fluid Flow., vol. 25, pp. 180–195, 2004. DOI: 10.1016/j.ijheatfluidflow.2003.11.004.
  • J. Yoo, C. E. Estrada-Perez, and Y. A. Hassan, “A proper observation and characterization of wall nucleation phenomena in a forced convective boiling system,” Int. J. Heat Mass Transf., vol. 76, pp. 568–584, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.04.063.
  • J. Yoo, C. E. Estrada-Perez, and Y. A. Hassan, “Experimental study on bubble dynamics and wall heat transfer arising from a single nucleation site at subcooled flow boiling conditions - Part 1: Experimental methods and data quality verification,” Int. J. Multiph. Flow., vol. 84, pp. 315–324, 2016. DOI: 10.1016/j.ijmultiphaseflow.2016.04.018.
  • J. Yoo, C. E. Estrada-Perez, and Y. A. Hassan, “Experimental study on bubble dynamics and wall heat transfer arising from a single nucleation site at subcooled flow boiling conditions - Part 2: Data analysis on sliding bubble characteristics and associated wall heat transfer,” Int. J. Multiph. Flow., vol. 84, pp. 315–324, 2016. DOI: 10.1016/j.ijmultiphaseflow.2016.04.019.
  • G. E. Thorncroft, J. F. Klausnera, and R. Mei, “An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling,” Int. J. Heat Mass Transf., vol. 41, pp. 3857–3871, 1998. DOI: 10.1016/S0017-9310(98)00092-1.
  • J. Du, C. Zhao, and H. Bo, “Investigation of bubble departure diameter in horizontal and vertical subcooled flow boiling,” Int. J. Heat Mass Transf., vol. 127, pp. 796–805, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.019.
  • S. Manickam and V. Dhir, “Holographic interferometric study of heat transfer to a sliding vapor bubble,” Int. J. Heat Mass Transf., vol. 55, pp. 925–940, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.10.016.
  • R. Sugrue, J. Buongiorno, and T. Mckrell, “An experimental study of bubble departure diameter in subcooled flow boiling including the effects of orientation angle, subcooling, mass flux, heat flux, and pressure,” Nucl. Eng. Des., vol. 279, pp. 182–188, 2017. DOI: 10.1016/j.nucengdes.2014.08.009.
  • S. Manickam and V. Dhir, “Holographic interferometric study of heat transfer associated with a single vapor bubble sliding along a downward-facing heater surface,” Heat Transf, vol. 2, pp. 317–327, 2003. DOI: 10.1115/HT2003-47159.
  • P. S. Greenberg, R. B. Klimek, and D. R. Buchele, “Quantitative rainbow schlieren deflectometry,” Appl. Opt, vol. 34, pp. 3810–3825, 1995. DOI: 10.1364/AO.34.003810.
  • S. Narayan, A. Srivastava, and S. Singh, “Rainbow schlieren-based investigation of heat transfer mechanisms during isolated nucleate pool boiling phenomenon: Effect of superheat levels,” Int. J. Heat Mass Transf., vol. 120, pp. 127–143, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.005.
  • P. Kangude, D. Bhatt, and A. Srivastava, “Experiments on the effects of nanoparticles on subcooled nucleate pool boiling,” Phys. Fluids, vol. 30, pp. 057105, 2018. DOI: 10.1063/1.5027295.
  • G. K. Sinha, S. Mahimkar, and A. Srivastava, “Schlieren-based simultaneous mapping of bubble dynamics and temperature gradients in nucleate flow boiling regime : Effect of flow rates and degree of subcooling,” Exp. Therm. Fluid Sci., vol. 104, pp. 238–257, 2019. DOI: 10.1016/j.expthermflusci.2019.02.018.
  • L. Z. Zeng, J. F. Klausner, and R. Mei, “A unified model for the prediction of bubble detachment diameters in boiling systems—II. flow boiling,” Int. J. Heat Mass Transf., vol. 36, pp. 2261–2270, 1993. DOI: 10.1016/S0017-9310(05)80111-5.
  • T. Okawa, T. Ishida, I. Kataoka, and M. Mori, “Bubble rise characteristics after the departure from a nucleation site in vertical upflow boiling of subcooled water,” Nucl. Eng. Des., vol. 235, pp. 1149–1161, 2005. DOI: 10.1016/j.nucengdes.2005.02.012.
  • D. W. Yuan, et al., “Bubble behavior of high subcooling flow boiling at different system pressure in vertical narrow channel,” Appl. Therm. Eng., vol. 31, pp. 3512–3520, 2011. DOI: 10.1016/j.applthermaleng.2011.07.004.
  • T. Okawa, K. Kaiho, S. Sakamoto, and K. Enoki, “Observation and modelling of bubble dynamics in isolated bubble regime in subcooled flow boiling,” Nucl. Eng. Des., vol. 335, pp. 400–408, 2018. DOI: 10.1016/j.nucengdes.2018.06.009.
  • M. Z. Podowski and R. M. Podowski, “Mechanistic multidimensional modeling of forced convection boiling heat transfer,” Sci. Technol. Nucl. Install, vol. 2009, 2009. DOI: 10.1155/2009/387020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.