Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 34, 2021 - Issue 2
143
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Thermal performance of a ground U-shaped tube with twisted tapes in sand/graphite backfill materials

, &
Pages 186-200 | Received 19 Nov 2019, Accepted 03 Feb 2020, Published online: 13 Feb 2020

References

  • U. Lucia, M. Simonetti, G. Chiesa, and G. Grisolia, “Ground-source pump system for heating and cooling: Review and thermodynamic approach,” Renewable Sustainable Energy Rev., vol. 70, pp. 867–874, 2017. DOI: 10.1016/j.rser.2016.11.268.
  • H. Javadi, S. S. Mousavi Ajarostaghi, M. A. Rosen, and M. Pourfallah, “Performance of ground heat exchangers: A comprehensive review of recent advances,” Energy, vol. 178, pp. 207–233, 2019. DOI: 10.1016/j.energy.2019.04.094.
  • L. Liu, N. Zhu, and J. Zhao, “Thermal equilibrium research of solar seasonal storage system coupling with ground-source heat pump,” Energy, vol. 99, pp. 83–90, 2016. DOI: 10.1016/j.energy.2016.01.053.
  • Y. Al-Ameen, A. Ianakiev, and R. Evans, “Thermal performance of a solar assisted horizontal ground heat exchanger,” Energy, vol. 140, pp. 1216–1227, 2017. DOI: 10.1016/j.energy.2017.08.091.
  • K. Bakirci, O. Ozyurt, K. Comakli, and O. Comakli, “Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications,” Energy, vol. 36, no. 5, pp. 3224–3232, 2011. DOI: 10.1016/j.energy.2011.03.011.
  • V. Trillat-Berdal, B. Souyri, and G. Fraisse, “Experimental study of a ground-coupled heat pump combined with thermal solar collectors,” Energy Build., vol. 38, no. 12, pp. 1477–1484, 2006. DOI: 10.1016/j.enbuild.2006.04.005.
  • Y. Bi, T. Guo, L. Zhang, and L. Chen, “Solar and ground source heat-pump system,” Appl. Energy, vol. 78, no. 2, pp. 231–245, 2004. DOI: 10.1016/j.apenergy.2003.08.004.
  • W. B. Yang, M. H. Shi, and H. Dong, “Numerical simulation of the performance of a solar-earth source heat pump system,” Appl. Therm. Eng., vol. 26, no. 17, pp. 2367–2376, 2006. DOI: 10.1016/j.applthermaleng.2006.02.017.
  • T. Kurevija, M. Macenić, and S. Borović, “Impact of grout thermal conductivity on the long-term efficiency of the ground-source heat pump system,” Sustainable Cities and Soc., vol. 31, pp. 1–11, 2017. DOI: 10.1016/j.scs.2017.02.009.
  • R. Borinaga-Treviño, P. Pascual-Muñoz, D. Castro-Fresno, and J. J. Del Coz-Díaz, “Study of different grouting materials used in vertical geothermal closed-loop heat exchangers,” Appl. Therm. Eng., vol. 50, no. 1, pp. 159–167, 2013. DOI: 10.1016/j.applthermaleng.2012.05.029.
  • H. Javadi, S. S. Mousavi Ajarostaghi, M. A. Rosen, and M. Pourfallah, “A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance,” Sustainability, vol. 10, no. 12, pp. 4486, 2018. DOI: 10.3390/su10124486.
  • B. Liang, M. Chen, B. Fu, and H. Li, “Investigation on the thermal and flow performances of a vertical spiral-tube ground heat exchanger in sand combined with kaolin additive,” Energy Build., vol. 190, pp. 235–245, 2019. DOI: 10.1016/j.enbuild.2019.03.003.
  • F. Delaleux, X. Py, R. Olives, and A. Dominguez, “Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity,” Appl. Therm. Eng., vol. 33-34, pp. 92–99, 2012. DOI: 10.1016/j.applthermaleng.2011.09.017.
  • M. Jobmann and G. Buntebarth, “Influence of graphite and quartz addition on the thermo–physical properties of bentonite for sealing heat-generating radioactive waste,” Appl. Clay Sci., vol. 44, no. 3, pp. 206–210, 2009. DOI: 10.1016/j.clay.2009.01.016.
  • S. Erol and B. François, “Efficiency of various grouting materials for borehole heat exchangers,” Appl. Therm. Eng., vol. 70, no. 1, pp. 788–799, 2014. DOI: 10.1016/j.applthermaleng.2014.05.034.
  • T. Zhou, M. Chen, B. Fu, B. Liang, and Q. Li, “Investigation on thermal and moisture migration performance in sand combined with graphite,” Appl. Therm. Eng., vol. 145, pp. 212–220, 2018. DOI: 10.1016/j.applthermaleng.2018.09.038.
  • R. Borinaga-Treviño, P. Pascual-Muñoz, D. Castro-Fresno, and E. Blanco-Fernandez, “Borehole thermal response and thermal resistance of four different grouting materials measured with a TRT,” Appl. Therm. Eng., vol. 53, no. 1, pp. 13–20, 2013. DOI: 10.1016/j.applthermaleng.2012.12.036.
  • C. Lee, K. Lee, H. Choi, and H.-P. Choi, “Characteristics of thermally-enhanced bentonite grouts for geothermal heat exchanger in South Korea,” Sci. China Ser. E, vol. 53, no. 1, pp. 123–128, 2010. DOI: 10.1007/s11431-009-0413-9.
  • H. F. Li, M. Q. Chen, B. A. Fu, and B. Liang, “Evaluation on the thermal and moisture diffusion behavior of sand/bentonite,” Appl. Therm. Eng., vol. 151, pp. 55–65, 2019. DOI: 10.1016/j.applthermaleng.2019.01.100.
  • M. A. Jalaluddin and A. Miyara, “Thermal performance and pressure drop of spiral-tube ground heat exchangers for ground-source heat pump,” Appl. Therm. Eng., vol. 90, pp. 630–637, 2015. DOI: 10.1016/j.applthermaleng.2015.07.035.
  • N. Jamshidi and A. Mosaffa, “Investigating the effects of geometric parameters on finned conical helical geothermal heat exchanger and its energy extraction capability,” Geothermics, vol. 76, pp. 177–189, 2018. DOI: 10.1016/j.geothermics.2018.07.007.
  • H. Boughanmi, M. Lazaar, A. Farhat, and A. Guizani, “Evaluation of soil thermal potential under Tunisian climate using a new conic basket geothermal heat exchanger: Energy and exergy analysis,” Appl. Therm. Eng., vol. 113, pp. 912–925, 2017. DOI: 10.1016/j.applthermaleng.2016.10.204.
  • D. Qi, L. Pu, Z. Ma, L. Xia, and Y. Li, “Effects of ground heat exchangers with different connection configurations on the heating performance of GSHP systems,” Geothermics, vol. 80, pp. 20–30, 2019. DOI: 10.1016/j.geothermics.2019.02.002.
  • J. Zhao, Y. Li, and J. Wang, “A Review on Heat Transfer Enhancement of Borehole Heat Exchanger,” Energy Procedia, vol. 104, pp. 413–418, 2016. DOI: 10.1016/j.egypro.2016.12.070.
  • S.-J. Cao, et al., “Investigation on thermal performance of steel heat exchanger for ground source heat pump systems using full-scale experiments and numerical simulations,” Appl. Therm. Eng., vol. 115, pp. 91–98, 2017. DOI: 10.1016/j.applthermaleng.2016.12.098.
  • S. Yoon, et al., “Evaluation of stainless steel pipe performance as a ground heat exchanger in ground-source heat-pump system,” Energy, vol. 113, pp. 328–337, 2016. DOI: 10.1016/j.energy.2016.07.057.
  • A. Koyun, H. Demir, and Z. Torun, “Experimental study of heat transfer of buried finned pipe for ground source heat pump applications,” Int. Commun. Heat Mass Transfer, vol. 36, no. 7, pp. 739–743, 2009. DOI: 10.1016/j.icheatmasstransfer.2009.03.022.
  • X.-R. Kong, Y. Deng, L. Li, W.-S. Gong, and S.-J. Cao, “Experimental and numerical study on the thermal performance of ground source heat pump with a set of designed buried pipes,” Appl. Therm. Eng., vol. 114, pp. 110–117, 2017. DOI: 10.1016/j.applthermaleng.2016.11.176.
  • Z. Li, et al., “Heat transfer performance of a vertical buried internally helically groove tube in soil/polyacrylamide under hot climate,” Appl. Therm. Eng., vol. 124, Supplement C, pp. 403–412, 2017. DOI: 10.1016/j.applthermaleng.2017.06.041.
  • B. Bouhacina, R. Saim, and H. F. Oztop, “Numerical investigation of a novel tube design for the geothermal borehole heat exchanger,” Appl. Therm. Eng., vol. 79, pp. 153–162, 2015. DOI: 10.1016/j.applthermaleng.2015.01.027.
  • H. Bas and V. Ozceyhan, “Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall,” Exp. Therm Fluid Sci., vol. 41, pp. 51–58, 2012. DOI: 10.1016/j.expthermflusci.2012.03.008.
  • K. Wongcharee and S. Eiamsa-ard, “Friction and heat transfer characteristics of laminar swirl flow through the round tubes inserted with alternate clockwise and counter-clockwise twisted-tapes,” Int. Commun. Heat Mass Transfer, vol. 38, no. 3, pp. 348–352, 2011. DOI: 10.1016/j.icheatmasstransfer.2010.12.007.
  • S. Eiamsa-ard and P. Promvonge, “Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts,” Int. J. Heat Mass Transf., vol. 53, no. 7, pp. 1364–1372, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.12.023.
  • S. Eiamsa-ard, C. Thianpong, and P. Promvonge, “Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements,” Int. Commun. Heat Mass Transfer, vol. 33, no. 10, pp. 1225–1233, 2006. DOI: 10.1016/j.icheatmasstransfer.2006.08.002.
  • A. Karimi, et al., “The effects of tape insert material on the flow and heat transfer in a nanofluid-based double tube heat exchanger: Two-phase mixture model,” Int. J. Mech. Sci., vol. 156, pp. 397–409, 2019. DOI: 10.1016/j.ijmecsci.2019.04.009.
  • R. Ranjbarzadeh, A. H. Meghdadi Isfahani, and M. Hojaji, “Experimental investigation of heat transfer and friction coefficient of the water/graphene oxide nanofluid in a pipe containing twisted tape inserts under air cross-flow,” Exp. Heat Transfer, vol. 31, no. 5, pp. 373–390, 2018. DOI: 10.1080/08916152.2018.1431736.
  • S. Singh, L. Pandey, H. Kharkwal, and H. Sah, “Augmentation of thermal performance of heat exchanger using elliptical and circular insert with vertical twisted tape,” Exp. Heat Transfer, pp. 1–16, 2019. DOI: 10.1080/08916152.2019.1662856.
  • S. Eiamsa-ard, C. Thianpong, P. Eiamsa-ard, and P. Promvonge, “Convective heat transfer in a circular tube with short-length twisted tape insert,” Int. Commun. Heat Mass Transfer, vol. 36, no. 4, pp. 365–371, 2009. DOI: 10.1016/j.icheatmasstransfer.2009.01.006.
  • X. Peng, D. Wang, G. Wang, Y. Yang, and S. Xiang, “Investigation of heat transfer performance and flow characteristic in helically coiled-twisted flat tube,” Exp. Heat Transfer, pp. 1–21, 2019. DOI: 10.1080/08916152.2019.1656300.
  • A. Kumar and B. N. Prasad, “Investigation of twisted tape inserted solar water heaters—heat transfer, friction factor and thermal performance results,” Renewable Energy, vol. 19, no. 3, pp. 379–398, 2000. DOI: 10.1016/S0960-1481(99)00061-0.
  • K. Wongcharee and S. Eiamsa-ard, “Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis,” Int. Commun. Heat Mass Transfer, vol. 38, no. 6, pp. 742–748, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.03.011.
  • S. M. Abolarin, M. Everts, and J. P. Meyer, “Heat transfer and pressure drop characteristics of alternating clockwise and counter clockwise twisted tape inserts in the transitional flow regime,” Int. J. Heat Mass Transf., vol. 133, pp. 203–217, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.107.
  • R. Datt, M. S. Bhist, A. Darshan Kotiyal, R. Maithani, and A. Kumar, “Development of new correlations for heat transfer and friction loss of solid ring with combined square wing twisted tape inserts heat exchanger tube,” Exp. Heat Transfer, vol. 32, no. 2, pp. 179–200, 2019. DOI: 10.1080/08916152.2018.1505784.
  • S. Bhattacharyya, A. I. Bashir, K. Dey, and R. Sarkar, “Effect of novel short-length wavy-tape turbulators on fluid flow and heat transfer: Experimental study,” Exp. Heat Transfer, pp. 1–20, 2019. DOI: 10.1080/08916152.2019.1639847.
  • B. Kumar, M. Kumar, A. K. Patil, and S. Jain, “Effect of V cut in perforated twisted tape insert on heat transfer and fluid flow behavior of tube flow: An experimental study,” Exp. Heat Transfer, vol. 32, no. 6, pp. 524–544, 2019. DOI: 10.1080/08916152.2018.1545808.
  • S. M. van Manen and E. Wallin, “Ground temperature profiles and thermal rock properties at Wairakei, New Zealand,” Renewable Energy, vol. 43, pp. 313–321, 2012. DOI: 10.1016/j.renene.2011.11.032.
  • Wan R, Chen MQ, Huang YW, Zhou T, Liang B, Luo HF, “Evaluation on the heat transfer performance of a vertical ground U-shaped tube heat exchanger buried in soil–polyacrylamide”, Experimental Heat Transfer, vol. 30(5), pp. 427-40, 2017, DOI:10.1080/08916152.2016.1276647.
  • M. M. K. Bhuiya, M. M. Roshid, M. M. M. Talukder, M. G. Rasul, and P. Das, “Influence of perforated triple twisted tape on thermal performance characteristics of a tube heat exchanger,” Appl. Therm. Eng., vol. 167, pp. 114769, 2020. DOI: 10.1016/j.applthermaleng.2019.114769.
  • S. R. Chaurasia and R. M. Sarviya, “Thermal performance analysis of CuO/water nanofluid flow in a pipe with single and double strip helical screw tape,” Appl. Therm. Eng., vol. 166, pp. 114631, 2020. DOI: 10.1016/j.applthermaleng.2019.114631.
  • L.-P. Kong, L. Qiao, Y.-Y. Xiao, and Q.-W. Li, “A study on heat transfer characteristics and pile group influence of enhanced heat transfer energy piles,” J. Build. Eng., vol. 24, pp. 100768, 2019. DOI: 10.1016/j.jobe.2019.100768.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.