Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 34, 2021 - Issue 3
343
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Study on the thermal conductivity model of sodium sulfate soils

, , , , &
Pages 217-239 | Received 21 Oct 2019, Accepted 03 Mar 2020, Published online: 26 Mar 2020

  • V. A. Kovda and I. Szabolcs, “Modelling of soil salinization and alkalization,” Agrochem. Soil Sci. Spec. Issue., vol. 28, pp. 1–208, 1979.
  • X. S. Wan, M. F. Gong, M. F. Qu, E. Qiu, C. Zhong, “Experimental study of the salt transfer in a cold sodium sulfate soil,” KSCE J. Civ. Eng., vol. 23, no. 4, pp. 1573–1585, 2019. DOI: 10.1007/s12205-019-0905-5.
  • M. Y. Zhang, X. T. Zhang, X. T. Xu, “Water-heat migration and frost-heave behavior of saturated silty clay with water supply,” Exp. Heat Transf., vol. 30, no. 6, pp. 517–529, 2017. DOI: 10.1080/08916152.2017.1312639.
  • N. Zhang, S. Q. Xia, X. Y. Hou, “Review on soil thermal conductivity and prediction model,” Rock Soil Mech., vol. 37, no. 6, pp. 1550–1562, 2016.
  • N. H. Abuhamdeh and R. C. Reeder, “Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter[J],” Soil Sci. Soc. Am. J., vol. 64, no. 4, pp.1285–1290, 2000. DOI: 10.2136/sssaj2000.6441285x.
  • H. L. He, Y. Zhao, M. F. Dyck, “A modified normalized model for predicting effective soil thermal conductivity[J],” Acta Geotech., vol. 12, no. 6, pp. 1281–1300, 2017. DOI: 10.1007/s11440-017-0563-z.
  • M. Y. Zhang, J. Bi, W. W. Chen, X. Zhang, J. Lu, “Evaluation of calculation models for the thermal conductivity of soils[J],” Nt. Commun. Heat Mass Transf., vol. 94, pp. 14–23, 2018. DOI: 10.1016/j.icheatmasstransfer.2018.02.005.
  • T. Zhang, G. J. Cai, S. Y. Liu, A J. Puppala, “Investigation on thermal characteristics and prediction models of soils[J],” Int. J. Heat Mass Transf., vol. 106, pp. 1074–1086, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.084.
  • V. R. Tarnawski, et al. “Canadian field soils iv: modeling thermal conductivity at dryness and saturation[J],” Int. J. Thermophys., vol. 39, no. 3, pp. 0192–928X, 2018. DOI: 10.1007/s10765-017-2357-9.
  • Y. S. Deng, P. He, and C. L. Zhou, “An experimental research on the thermal conductivity coefficient of saline soil,” J. Glaciol. Geocryol., vol. 26, pp. 319–323, 2004.
  • K. Middttømme and E. Roaldset, “The effect of grain size on thermal conductivity of quartz sands and silts,” Pet. Geosci., vol. 4, no. 2, pp.165–172, 1998. DOI: 10.1144/petgeo.4.2.165.
  • B. Usowicz, J. Lipiec, J. B. Usowicz, W. Marczewski, “Effects of aggregate size on soil thermal conductivity: comparison of measured and model-predicted data[J],” Int. J. Heat Mass Transf., vol. 57, no. 2, pp. 536–541, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.067.
  • M. E. Orakoglu, J. Liu, and F. Niu, “Experimental and modeling investigation of the thermal conductivity of fiber-reinforced soil subjected to freeze-thaw cycles[J],” Appl. Therm. Eng., vol. 108, pp. 824–832, 2016. DOI: 10.1016/j.applthermaleng.2016.07.112.
  • O. Johansen, “Varmeledningsevne av jordarter (Thermal conductivity of soils). University of Trondheim, Trondheim,” US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, N.H., CRREL Draft English Translation 637, 1975.
  • O. Johansen, Thermal Conductivity of Soils. Hanover: Cold Regions Research and Engineering Laboratory, US Army Corps of Engineers, 1977.
  • M. S. Kersten, “Thermal properties of soils,” Minnesota University Engineering Experiment Station, Bulletin No. 28, Minneapolis, Minnesota University Institute of Technology, 1949.
  • W. O. Smith, “The thermal conductivity of dry soil,” Soil Sci., vol. 53, no. 6, pp.435–460, 1942. DOI: 10.1097/00010694-194206000-00003.
  • W. O. Smith and H. G. Byers, “The thermal conductivity of dry soils of certain of the great soil groups,” Soil Sci. Soc. Am. J., vol. 3, pp. 13–19, 1939. DOI: 10.2136/sssaj1939.036159950003000C0003x.
  • C. Jean and M. K. Jean, “A generalized thermal conductivity model for soils and construction materials[J],” Can. Geotech. J., vol. 42, no. 2, pp.443–458, 2005. DOI: 10.1139/t04-106.
  • J. Ewen and H. R. Thomas, “The thermal probe—a new method and its use on an unsaturated sand,” Géotechnique., vol. 37, no. 1, pp.91–105, 1987. DOI: 10.1680/geot.1987.37.1.91.
  • B. Vincent and A. A. Paul, “Modeling soil thermal conductivities over a wide range of conditions[J],” J. Environ. Eng. Sci., vol. 4, no. 6, pp.549–558, 2005. DOI: 10.1139/s05-007.
  • S. Lu, et al. “An improved model for predicting soil thermal conductivity from water content at room temperature[J],” Soil Sci. Soc. Am. J., vol. 71, no. 1, pp. 8–14, 2007. DOI: 10.2136/sssaj2006.0041.
  • L. Ning and D. Yi, “Closed-form equation for thermal conductivity of unsaturated soils at room temperature[J],” J. Geotech. Geoenviron. Eng., vol. 141, pp. 1090–1241, 2015.
  • D. Łydżba, A. Różański, and D. Stefaniuk, “Equivalent microstructure problem: mathematical formulation and numerical solution[J],” Int. J. Eng. Sci., vol. 123, pp. 20–35, 2018. DOI: 10.1016/j.ijengsci.2017.11.007.
  • D. Łydżba, A. Różański, I. Sevostianov, D., Stefaniuk, “Principle of equivalent micro-structure in micro-mechanics and its connection with the replacement relations. Thermal conductivity problem[J],” Int. J. Eng. Sci., 144, 2019. Doi: 10.1016/j.ijengsci.2019.103126.
  • T. Wang, G. Q. Zhou, X. Jiang, J. Wang,“Assessment for the spatial variation characteristics of uncertain thermal parameters for warm frozen soil[J],” Appl. Therm. Eng., vol. 134, pp. 484–489, 2018. DOI: 10.1016/j.applthermaleng.2018.02.023.
  • S. Y. Li, C. Wang, L. H. Shi, N. Yin, “Statistical characteristics of the thermal conductivity of frozen clay at different water contents,” Results Phys., 13, 2019. Doi: 10.1016/j.rinp.2019.102179.
  • W. S. Pei, W. B. Yu, S. Y. Li, J. Zhou, “A new method to model the thermal conductivity of soil–rock media in cold regions: an example from permafrost regions tunnel[J],” Cold Reg. Sci. Technol., vol. 95, pp. 11–18, 2013. DOI: 10.1016/j.coldregions.2013.08.001.
  • C. Wang, Y. M. Lai, M. Y. Zhang, S. Li, “A generalized thermal conductivity model of geomaterials based on micro-structures[J],” Acta Geotech., vol. 14, no. 5, pp. 1423–1436, 2018. DOI: 10.1007/s11440-018-0728-4.
  • M. Y. Zhang, X. Y. Zhang, J. G. Lu, W. Pei, C. Wang “Analysis of volumetric unfrozen water contents in freezing soils[J],” Exp. Heat Transf., vol. 32, no. 5, pp. 426–438, 2018. DOI: 10.1080/08916152.2018.1535528.
  • W. Liu, A. W. Fan, and X. M. Huang, Theory and Application of Heat and Mass Transfer in Porous Media[M]. Beijing: Science Press, 2006.
  • L. Qiu, et al. “Thermal transport barrier in carbon nanotube array nano-thermal interface materials[J],” Carbon., vol. 120, pp. 128–136, 2017. DOI: 10.1016/j.carbon.2017.05.037.
  • L. Qiu, P. Guo, H. Zou, “Extremely low thermal conductivity of graphene nanoplatelets using nanoparticle decoration[J],” ES Energy Environ., vol. 2, pp. 66–72, 2018.
  • L. Qiu, P. Guo, X. Q. Yang, “Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances[J],” Carbon., vol. 145, pp. 650–657, 2019. DOI: 10.1016/j.carbon.2019.01.074.
  • L. Qiu, P. Guo, Q. Y. Kong, “Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials[J],” Carbon., vol. 145, pp. 725–733, 2019. DOI: 10.1016/j.carbon.2019.01.085.
  • M. Dall Amico, X. Z. Sun, “A robust and energy-conserving model of freezing variably-saturated soil[J],” Cryosphere., vol. 5, no. 2, pp. 469–484, 2011. DOI: 10.5194/tc-5-469-2011.
  • K. Q. Wang and X. Z. Sun, “A new method for calculating the thermal conductivity of electrolyte aqueous solution [J],” Chem. Eng., vol. 30, pp. 60–62, 2002.
  • J. S. Kargel, “Brine volcanism and the interior structures of asteroids and icy satellites[J],” Icarus., vol. 94, no. 2, pp.368–390, 1991. DOI: 10.1016/0019-1035(91)90235-L.
  • K. S. Pitzer, “Ion interaction approach: theory and data correlation,” in Activity Coefficients in Electrolyte Solutions, K. S. Pitzer, Ed.. Boca Raton: CRC Press, 1991, pp. 75–153.
  • G. M. Marion and S. A. Grant (1994). FREZCHEM: a chemical equilibrium modelfor aqueousso-lutions at subzero temperatures. CRREL Sepc. Rept. 94-18. USACRREL, Hanover, New Hampshire.
  • J. A. Kong and A. H. Sihvola, “Effective permittivity of dielectric mixtures[J],” IEEE Trans. Geosci. Remote Sens., vol. 26, no. 4, pp.420–429, 1988. DOI: 10.1109/36.3045.
  • H. L. He and M. Dyck, “Application of multiphase dielectric mixing models for understanding the effective dielectric permittivity of frozen Soils[J],” Vadose Zone J., vol. 12, pp. 1, 2013. DOI: 10.2136/vzj2012.0060.
  • W. T. Doyle and I. S. Jacobs, “The influence of particle shape on dielectric enhancement in metal-insulator composites[J],” J. Appl. Phys., vol. 71, no. 8, pp.3926, 1992. DOI: 10.1063/1.350862.
  • M. H. Sharqawy, “New correlations for seawater and pure water thermal conductivity at different temperatures and salinities[J],” Desalination., vol. 313, no. 11, pp.97–104, 2013. DOI: 10.1016/j.desal.2012.12.010.
  • N. Ahmad and W. A. Phillips, “Thermal conductivity of ice and ice clathrate[J],” Solid State Commun., vol. 63, no. 2, pp.167–171, 1987. DOI: 10.1016/0038-1098(87)91189-6.
  • R. B. Montgomery, “viscosity and thermal conductivity of air and diffusivity of water vapor in air[J],” J. Atmos. Sci., vol. 4, pp. 193–196, 1947.
  • D. E. Hare and C. M. Sörensen, “The density of supercooled water. II. Bulk samples cooled to the homogeneous nucleation limit,” J. Phys. Chem., vol. 87, pp. 4840–4845, 1987. DOI: 10.1063/1.453710.
  • H. R. Pruppacher and J. D. Klett, Microphysics of Cloulds and Precipitation. New York, Bston, Dordrecht, London, Moscow: Kluwer Acadamic Pubishers, 1997.
  • H. Derluyn (2012). Salt transport and crystallization in porous limestone: neutron-X-Ray Imaging and poromechanical modeling. PhD Dissertation. Zürich: University of Zurich, 9–27.
  • X. S. Wan, Y. M. Lai, and C. Wang, “Experimental study on the freezing temperatures of saline silty soils[J],” Permafrost Periglacial Processes., vol. 26, no. 2, pp.175–187, 2015. DOI: 10.1002/ppp.v26.2.
  • K. Watanabe and T. Wake, “Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR,” Cold Reg. Sci. Technol., vol. 59, pp. 34–41, 2009. DOI: 10.1016/j.coldregions.2009.05.011.
  • L. Y. Tang, K. Wang, L. Jin et al. “A resistivity model for testing unfrozen water content of frozen soil[J],” Cold Reg. Sci. Technol., vol. 153, pp. 55–63, 2018. DOI: 10.1016/j.coldregions.2018.05.003.
  • Z. Hashin and S. Shtrikman, “A variational approach to the theory of the elastic behaviour of polycrystals[J],” J. Mech. Phys. Solids., vol. 10, no. 4, pp.343–352, 1962. DOI: 10.1016/0022-5096(62)90005-4.
  • M. T. A. Van Genuchten, “Closed-form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil Sci. Soc. Am. J., vol. 44, pp. 892–898, 1980. DOI: 10.2136/sssaj1980.03615995004400050002x.
  • Y. Zhou and D. W. Li, “Sensitivity analysis of different factors on thermal conductivity coefficient of effect of saline soil,” Coal Technol.,vol. 35, no. 1 pp. 120–122, 2016.
  • X. S. Wan, Z. M. You, H. Y. Wen, and W. Crossley, “An experimental study of salt expansion in sodium saline soils under transient conditions[J],” J. Arid Land., vol. 9, no. 6, pp.865–878, 2017. DOI: 10.1007/s40333-017-0029-z.
  • C. F. Bohren and B. A. Albrecht, Atmospheric Thermodynamics. New York: Oxford University Press, 1998.
  • M. Steiger, “Crystal growth in porous Materials: I. The crystallization pressure of large crystals,” J. Cryst. Growth., vol. 282, pp. 455–469, 2005. DOI: 10.1016/j.jcrysgro.2005.05.007.
  • M. Steiger, J. Kiekbusch, and A. Nicolai, “An improved model incorporating Pitzer’s equations for calculations of thermodynamic properties of pore solutions implemented into an effect program code,” Constr. Build. Mater., vol. 22, pp. 1841–1850, 2008. DOI: 10.1016/j.conbuildmat.2007.04.020
  • J. M. Prausnitz, N. R. Lichtenthaler, and E. G. De Azevedo, Molecular Thermodynamics Of Fluid-phase Equilibria, 3rd ed. London: Prentice Hall press, 1999

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.