Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 34, 2021 - Issue 3
200
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Mass transfer inside spiral coils under laminar flow and possible applications

, &
Pages 240-250 | Received 18 Nov 2019, Accepted 03 Mar 2020, Published online: 16 Mar 2020

References

  • P. Naphon, “Study on the heat transfer and flow characteristics in a spiral-coil tube,” Int. Commun. Heat Mass Transfer, vol. 38, pp. 69–74, 2011. DOI: 10.1016/j.icheatmasstransfer.2010.10.007.
  • R. H. Patil, “Experimental studies on heat transfer to Newtonian fluids through spiral coils,” Exp. Therm. Fluid Sci., vol. 84, pp. 144–155, 2017. DOI: 10.1016/j.expthermflusci.2017.02.002.
  • N. E. Wijeysundera, J. C. Ho, and S. Rajasekar, “The effectiveness of a spiral coil heat exchanger,” Int. Commun. Heat Mass Transfer, vol. 23, pp. 623–631, 1996. DOI: 10.1016/0735-1933(96)00045-0.
  • S. Vashisth, V. Kumar, and K. D. Nigam, “A review on the potential applications of curved geometries in process industry,” Ind Eng Chem Res, vol. 47, pp. 3291–3337, 2008. DOI: 10.1021/ie701760h.
  • S. Pourhedayat, S. Khorasani, and H. S. Dizaji, “A comprehensive analysis and empirical correlations for Nusselt number, friction factor and exergy destruction of helical tube equipped with spring-wire,” Int. J. Therm. Sci., vol. 145, pp. 106050, 2019. DOI: 10.1016/j.ijthermalsci.2019.106050.
  • R. A. Rezaei, S. Jafarmadar, and S. Khorasani, “Presentation of frictional behavior of micro helical tubes with various geometries and related empirical correlation; an experimental study,” Int. J. Therm. Sci., vol. 140, pp. 377–387, 2019. DOI: 10.1016/j.ijthermalsci.2019.03.011.
  • H. Moradi, A. Bagheri, M. Shafaee, and S. Khorasani, “Experimental investigation on the thermal and entropic behavior of a vertical helical tube with none-boiling upward air-water two-phase flow,” Appl. Therm. Eng., vol. 157, pp. 113621, 2019. DOI: 10.1016/j.applthermaleng.2019.04.031.
  • D. Panahi, “Evaluation of Nusselt number and effectiveness for a vertical shell-coiled tube heat exchanger with air bubble injection into shell side,” Exp. Heat Transfer, vol. 30, pp. 179–191, 2017. DOI: 10.1080/08916152.2016.1233145.
  • X. Peng, D. Wang, G. Wang, Y. Yang, and S. Xiang, “Investigation of heat transfer performance and flow characteristic in helically coiled-twisted flat tube,” Exp. Heat Transfer, pp. 1–21, 2019. DOI: 10.1080/08916152.2019.1656300.
  • N. Demesa, J. A. Hernández, D. Juárez, and A. Huicochea, “Experimental assessment of heat exchangers with nested helical coils for an absorption heat transformer,” Exp. Heat Transfer, pp. 1–22, 2020. DOI: 10.1080/08916152.2020.1725181.
  • M. Ghobadi and Y. S. Muzychka, “Heat transfer and pressure drop in a spiral square channel,” Exp. Heat Transfer, vol. 28, pp. 546–563, 2015. DOI: 10.1080/08916152.2014.915272.
  • M. H. Abdel-Aziz and G. H. Sedahmed, “Natural convection mass and heat transfer at a horizontal spiral tube heat exchanger,” Chem. Eng. Res. Des., vol. 145, pp. 122–127, 2019. DOI: 10.1016/j.cherd.2019.03.012.
  • M. H. Abdel-Aziz, I. A. S. Mansour, and G. H. Sedahmed, “Study of the rate of liquid–solid mass transfer controlled processes in helical tubes under turbulent flow conditions,” Chem. Eng. Process. Process Intensif., vol. 49, pp. 643–648, 2010. DOI: 10.1016/j.cep.2009.06.004.
  • G. H. Sedahmed, L. W. Shemilt, and F. Wong, “Natural convection mass transfer characteristics of rings and helical coils in relation to their use in electrochemical reactor design,” Chem Eng Sci, vol. 40, pp. 1109–1114, 1985. DOI: 10.1016/0009-2509(85)85069-7.
  • P. Harriott and R. M. Hamilton, “Solid-liquid mass transfer in turbulent pipe flow,” Chem Eng Sci, vol. 20, pp. 1073–1078, 1965. DOI: 10.1016/0009-2509(65)80110-5.
  • F. B. Berger and K.-F.-F.-L. Hau, “Mass transfer in turbulent pipe flow measured by the electrochemical method,” Int J Heat Mass Transf, vol. 20, pp. 1185–1194, 1977. DOI: 10.1016/0017-9310(77)90127-2.
  • M. K. Kishinevsky, T. B. Denisova, and V. A. Parmenov, “The study of mass transfer from the wall of a smooth tube to a turbulent liquid flow at high Schmidt numbers,” Int J Heat Mass Transf, vol. 9, pp. 1449–1453, 1966. DOI: 10.1016/0017-9310(66)90140-2.
  • D. A. Shaw and T. J. Hanratty, “Turbulent mass transfer rates to a wall for large Schmidt numbers,” AlChE J., vol. 23, pp. 28–37, 1977. DOI: 10.1002/aic.690230106.
  • J. A. Koutsky and R. J. Adler, “Minimisation of axial dispersion by use of secondary flow in helical tubes,” Can J Chem Eng, vol. 42, pp. 239–246, 1964. DOI: 10.1002/cjce.5450420602.
  • Z. Anxionnaz, M. Cabassud, C. Gourdon, and P. Tochon, “Heat exchanger/reactors (HEX reactors): concepts, technologies: state-of-the-art,” Chem. Eng. Process. Process Intensif., vol. 47, no. 12, pp.2029–2050, 2008. DOI: 10.1016/j.cep.2008.06.012.
  • F. M. Dautzenberg and M. Mukherjee, “Process intensification using multifunctional reactors,” Chem Eng Sci, vol. 56, pp. 251–267, 2001. DOI: 10.1016/S0009-2509(00)00228-1.
  • P. R. Roberge, Corrosion Engineering: Principles and Practice. N. Y: McGraw Hill, 2008.
  • J. M. Coulson, J. F. Richardson, and R. K. Sinnot. Chemical Engineering, Vol. 6, N. Y:Design, Pergamon Press, 1983.
  • K. M. Bailey, “Understand spiral heat exchangers,” Chem. Eng. Prog., vol. 90, pp. 59–63, 1994.
  • C. E. Kalb and J. D. Seader, “Heat and mass transfer phenomena for viscous flow in curved circular tubes,” Int J Heat Mass Transf, vol. 15, pp. 801–817, 1972. DOI: 10.1016/0017-9310(72)90122-6.
  • D. P. Gregory and A. C. Riddiford, “Dissolution of copper in sulfuric acid solutions,” J Electrochem Soc, vol. 107, pp. 950–956, 1960. DOI: 10.1149/1.2427577.
  • A. J. Madden and D. G. Nelson, “A novel technique for determining mass transfer coefficients in agitated solid‐liquid systems,” AlChE J., pp. 415–430, 1964. DOI: 10.1002/aic.690100326.
  • R. Gruber and T. Melin, “Mixed convection in the copper dissolution technique of studying mass transfer,” Int J Heat Mass Transf, vol. 46, pp. 2403–2413, 2003. DOI: 10.1016/S0017-9310(03)00011-5.
  • R. Gruber and T. Melin, “Radial mass-transfer enhancement in bubble-train flow,” Int J Heat Mass Transf, vol. 46, pp. 2799–2808, 2003. DOI: 10.1016/S0017-9310(03)00053-X.
  • M. S. Soliman, S. A. Nosier, M. Hussein, G. H. Sedahmed, and A. A. Mubarak, “Mass and heat transfer behavior of a new heterogeneous stirred tank reactor with serpentine tube baffles,” Chem. Eng. Res. Des., vol. 124, pp. 211–221, 2017. DOI: 10.1016/j.cherd.2017.06.012.
  • A. I. Vogel, A Text Book of Quantitative Inorganic Analysis. London: Longmans, 1961.
  • F. Walsh, A First Course in Electrochemical Engineering. Hants (UK): The electrochemical consultancy, 1993.
  • D. Pickett, Electrochemical Reactor Design. NY: Elsevier, 1977.
  • F. A. Holand and R. Bragg, Fluid Flow for Chemical Engineers. London: E. Arnold, 1995.
  • F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer. NY: John Wiley & Sons, 1990.
  • R. C. Xin and M. A. Ebadian, “The effects of Prandtl numbers on local and average convective heat transfer characteristics in helical pipes,” J. Heat Transfer, vol. 119, pp. 467–473, 1997. DOI: 10.1115/1.2824120.
  • C. E. Kalb and J. D. Seader, “Fully developed viscous—flow heat transfer in curved circular tubes with uniform wall temperature,” AlChE J., vol. 20, pp. 340–346, 1974. DOI: 10.1002/aic.690200220.
  • N. A. Dravid, K. A. Smith, E. W. Merrill, and P. L. T. Brian, “Effect of secondary fluid motion on laminar flow heat transfer in helically coiled tubes,” AlChE J., vol. 17, pp. 1114–1122, 1971. DOI: 10.1002/aic.690170517.
  • S. Ali and C. V. Seshadri, “Pressure drop in Archimedian spiral tubes,” Ind. Eng. Chem. Process Des. Dev., vol. 10, pp. 328–332, 1971. DOI: 10.1021/i260039a009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.