Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 34, 2021 - Issue 4
380
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Experimental and semi-analytical investigation of heat transfer in nucleate pool boiling by considering surface structuring methods

, &
Pages 293-313 | Received 11 Dec 2019, Accepted 12 Mar 2020, Published online: 06 Apr 2020

References

  • B. Yu and P. Cheng, “A fractal model for nucleate pool boiling heat transfer,” J. Heat Transf., vol. 124, no. 6, pp. 1117–1124, 2002. DOI: 10.1115/1.1513580.
  • D. E. Kim, D. I. Yu, D. W. Jerng, M. H. Kim, and H. S. Ahn, “Review of boiling heat transfer enhancement on micro/nanostructured surfaces,” Exp. Therm. Fluid Sci., vol. 66, pp. 173–196, 2015. DOI: 10.1016/j.expthermflusci.2015.03.023.
  • A. Nazari and S. Saedodin, “Critical heat flux enhancement of pool boiling using a porous nanostructured coating,” Exp. Heat Transf., vol. 30, no. 4, pp. 316–327, 2017. DOI: 10.1080/08916152.2016.1249806.
  • S. K. Gupta and R. D. Misra, “An experimental investigation on pool boiling heat transfer enhancement using Cu-Al2O3 nano-composite coating,” Exp. Heat Transf., vol. 32, no. 2, pp. 133–158, 2019. DOI: 10.1080/08916152.2018.1485785.
  • V. Umesh, S. B. Vignesh, and B. Raja, “A study on nucleate boiling heat transfer characteristics of acetone on smooth and indented surfaces,” Exp. Heat Transf., vol. 29, no. 3, pp. 414–425, 2016. DOI: 10.1080/08916152.2015.1012570.
  • H. Zhao and A. Williams, “Predicting the critical heat flux in pool boiling based on hydrodynamic instability induced irreversible hot spots,” Int. J. Multiphase Flow, vol. 104, pp. 174–187, 2018. DOI: 10.1016/j.ijmultiphaseflow.2018.02.021.
  • V. V. Nirgude and S. K. Sahu, “Enhancement in nucleate pool boiling heat transfer on nano-second laser processed copper surfaces,” Exp. Heat Transf., vol. 32, no. 6, pp. 566–583, 2019. DOI: 10.1080/08916152.2018.1559262.
  • -Y.-Y. Li, Z.-H. Liu, and G.-S. Wang, “A predictive model of nucleate pool boiling on heated hydrophilic surfaces,” Int. J. Heat Mass Transf., vol. 65, pp. 789–797, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.024.
  • R. Benjamin and A. Balakrishnan, “Nucleate pool boiling heat transfer of pure liquids at low to moderate heat fluxes,” Int. J. Heat Mass Transf., vol. 39, no. 12, pp. 2495–2504, 1996. DOI: 10.1016/0017-9310(95)00320-7.
  • M. Zimmermann, M. Heinz, A. Sielaff, T. Gambaryan-Roisman, and P. Stephan, “Influence of system pressure on pool boiling regimes on a microstructured surface compared to a smooth surface,” Exp. Heat Transf., pp. 1–17, 2019. DOI: 10.1080/08916152.2019.1635228.
  • T. Hibiki and M. Ishii, “Active nucleation site density in boiling systems,” Int. J. Heat Mass Transf., vol. 46, no. 14, pp. 2587–2601, 2003. DOI: 10.1016/S0017-9310(03)00031-0.
  • D. Serret, S. Guignard, and L. Tadrist, “Nucleate boiling on a single site: contact angle analysis for a quasi-2D growing vapour bubble,” Microgravity Sci. Technol., vol. 21, no. 1–2, pp. 101–105, 2009. DOI: 10.1007/s12217-008-9053-0.
  • H. J. Chung and H. C. No, “A nucleate boiling limitation model for the prediction of pool boiling CHF,” Int. J. Heat Mass Transf., vol. 50, no. 15–16, pp. 2944–2951, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.12.023.
  • A. M. Gheitaghy, A. Samimi, and H. Saffari, “Surface structuring with inclined minichannels for pool boiling improvement,” Appl. Therm. Eng., vol. 126, pp. 892–902, 2017. DOI: 10.1016/j.applthermaleng.2017.07.200.
  • A. M. Gheitaghy, H. Saffari, and M. Mohebbi, “Investigation pool boiling heat transfer in U-shaped mesochannel with electrodeposited porous coating,” Exp. Therm. Fluid Sci., vol. 76, pp. 87–97, 2016. DOI: 10.1016/j.expthermflusci.2016.03.011.
  • Y. Tang, J. Zeng, S. Zhang, C. Chen, and J. Chen, “Effect of structural parameters on pool boiling heat transfer for porous interconnected microchannel nets,” Int. J. Heat Mass Transf., vol. 93, pp. 906–917, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.11.009.
  • E. Akbari, A. M. Gheitaghy, H. Saffari, and S. M. Hosseinalipour, “Effect of silver nanoparticle deposition in re-entrant inclined minichannel on bubble dynamics for pool boiling enhancement,” Exp. Therm. Fluid Sci., vol. 82, pp. 390–401, 2017. DOI: 10.1016/j.expthermflusci.2016.11.037.
  • B. Qian and Z. Shen, “Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates,” Langmuir, vol. 21, no. 20, pp. 9007–9009, 2005. DOI: 10.1021/la051308c.
  • R. Vachon, G. Tanger, D. Davis, and G. Nix, “Pool boiling on polished and chemically etched stainless-steel surfaces,” J. Heat Transf., vol. 90, no. 2, pp. 231–238, 1968. DOI: 10.1115/1.3597486.
  • R. P. Rioux, E. C. Nolan, and C. H. Li, “A systematic study of pool boiling heat transfer on structured porous surfaces: from nanoscale through microscale to macroscale,” AIP Adv., vol. 4, no. 11, pp. 117133, 2014. DOI: 10.1063/1.4902343.
  • S. Mehendale, A. Jacobi, and R. Shah, “Fluid flow and heat transfer at micro-and meso-scales with application to heat exchanger design,” Appl. Mech. Rev., vol. 53, no. 7, pp. 175–193, 2000. DOI: 10.1115/1.3097347.
  • B. Mikic and W. Rohsenow, “A new correlation of pool-boiling data including the effect of heating surface characteristics,” J. Heat Transf., vol. 91, no. 2, pp. 245–250, 1969. DOI: 10.1115/1.3580136.
  • K. Cornwell and R. Brown, “Boiling surface topography,” Proceedings of 6th international heat transfer conference, Toronto, Canada, 1978.
  • G. Kocamustafaogullari and M. Ishii, “Interfacial area and nucleation site density in boiling systems,” Int. J. Heat Mass Transf., vol. 26, no. 9, pp. 1377–1387, 1983. DOI: 10.1016/S0017-9310(83)80069-6.
  • C. Wang and V. Dhir, “Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface,” J. Heat Transf., vol. 115, no. 3, pp. 659–669, 1993. DOI: 10.1115/1.2910737.
  • B. Xiao and B. Yu, “A fractal model for critical heat flux in pool boiling,” Int. J. Therm. Sci., vol. 46, no. 5, pp. 426–433, 2007. DOI: 10.1016/j.ijthermalsci.2006.07.005.
  • B. Xiao, “A new analytical model for heat transfer in pool boiling,” Mod. Phys. Lett. B, vol. 24, no. 12, pp. 1229–1236, 2010. DOI: 10.1142/S0217984910023256.
  • R. L. Mohanty and M. K. Das, “A critical review on bubble dynamics parameters influencing boiling heat transfer,” Renewable Sustainable Energy Rev., vol. 78, pp. 466–494, 2017. DOI: 10.1016/j.rser.2017.04.092.
  • S. Van Stralen, M. Sohal, R. Cole, and W. Sluyter, “Bubble growth rates in pure and binary systems: combined effect of relaxation and evaporation microlayers,” Int. J. Heat Mass Transf., vol. 18, no. 3, pp. 453–467, 1975. DOI: 10.1016/0017-9310(75)90033-2.
  • V. Sernas and F. Hooper, “The initial vapor bubble growth on a heated wall during nucleate boiling,” Int. J. Heat Mass Transf., vol. 12, no. 12, pp. 1627–1639, 1969. DOI: 10.1016/0017-9310(69)90097-0.
  • V. H. Del Valle and D. Kenning, “Subcooled flow boiling at high heat flux,” Int. J. Heat Mass Transf., vol. 28, no. 10, pp. 1907–1920, 1985. DOI: 10.1016/0017-9310(85)90213-3.
  • V. Dhir, “Nucleate and transition boiling heat transfer under pool and external flow conditions,” Int. J. Heat Fluid Flow, vol. 12, no. 4, pp. 290–314, 1991. DOI: 10.1016/0142-727X(91)90018-Q.
  • R. Judd and K. Hwang, “A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation,” J. Heat Transf., vol. 98, no. 4, pp. 623–629, 1976. DOI: 10.1115/1.3450610.
  • H. Chi-Yeh and P. Griffith, “The mechanism of heat transfer in nucleate pool boiling—Part I: bubble initiaton, growth and departure,” Int. J. Heat Mass Transf., vol. 8, no. 6, pp. 887–904, 1965. DOI: 10.1016/0017-9310(65)90073-6.
  • R. H. Todd, D. K. Allen, and L. Alting. Manufacturing Processes Reference Guide. New York, USA: Industrial Press Inc, 1994.
  • T. A. Spedding and Z. Wang, “Study on modeling of wire EDM process,” J. Mat. Proc. Technol., vol. 69, no. 1–3, pp. 18–28, 1997. DOI: 10.1016/S0924-0136(96)00033-7.
  • S. K. Choudhary and R. Jadoun, “Current advanced research development of electric discharge machining (EDM): a review,” Int. J. Res. Advent Technol., vol. 2, pp. 273–297, 2014.
  • V. Kumar Jaiswal, A. Paul, V. Yadav, and V. Singh, “Literature review on Electrical Discharge Machining (EDM),” Int. J. Sci. Res. Dev., vol. 6, pp. 239–241, 2018.
  • H. Saffari, H. Fathalizadeh, H. Moghadasi, S. Alipour, and S. M. Hosseinalipour, “Experimental study of pool boiling enhancement for surface structuring with inclined intersected mesochannels using WEDM method on copper surfaces,” J. Therm. Anal. Calorim., vol. 139, pp. 1849–1861, 2019.
  • S. J. Kline, “Describing uncertainty in single sample experiments,” Mech. Eng., vol. 75, pp. 3–8, 1953.
  • H. T. Phan, N. Caney, P. Marty, S. Colasson, and J. Gavillet, “How does surface wettability influence nucleate boiling?” C.R. Mec., vol. 337, no. 5, pp. 251–259, 2009. DOI: 10.1016/j.crme.2009.06.032.
  • J. M. Coulson, J. F. Richardson, J. R. Backhurst, and J. H. Harker, Chemical Engineering: Fluid Flow, Heat Transfer and Mass Transfer, vol. 1. London, United Kingdom: Butterworth-Heinemann, 1999.
  • Y. A. Cengel, S. Klein, and W. Beckman. Heat Transfer: A Practical Approach, vol. 141. New York: McGraw-Hill, 1998.
  • -C.-C. Hsu and P.-H. Chen, “Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings,” Int. J. Heat Mass Transf., vol. 55, no. 13–14, pp. 3713–3719, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.003.
  • S. S. Arshadi, H. Saffari, and A. Gheitaghi, “Analytical and experimental investigation of nucleate pool boiling heat transfer on copper hydrophilic surfaces,” Iran. J. Mech. Eng., vol. 4, pp. 85–104, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.