Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 34, 2021 - Issue 4
250
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation on heating performance of a counter-flow vortex tube

, &
Pages 314-328 | Received 19 Dec 2019, Accepted 06 Mar 2020, Published online: 26 Mar 2020

References

  • B. Zhang and X. Guo, “Prospective applications of Ranque–Hilsch vortex tubes to sustainable energy utilization and energy efficiency improvement with energy and mass separation,” Renew. Sust. Energ. Rev., vol. 89, pp. 135–150, 2018. DOI: 10.1016/j.rser.2018.02.026.
  • M. Selek, S. Tasdemir, K. Dincer, and S. Baskaya, “Experimental examination of the cooling performance of Ranque-Hilsch vortex tube on the cutting tool nose point of the turret lathe through infrared thermography method,” Int. J. Refrig., vol. 34, no. 3, pp.807–815, 2011. DOI: 10.1016/j.ijrefrig.2010.11.008.
  • A. Kumar and S. Subudhi, “Cooling and dehumidification using vortex tube,” Appl. Therm. Eng., vol. 122, pp. 181–193, 2017. DOI: 10.1016/j.applthermaleng.2017.05.015.
  • J. Yun, Y. Kim, and S. Yu, “Feasibility study of carbon dioxide separation from gas mixture by vortex tube,” Int. J. Heat Mass Transf., vol. 26, pp. 353–361, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.150.
  • A. N. Shmroukh, M. Attalla, and A. A. E. Abd El-Hakim, “Experimental investigation of a novel sea water desalination system using ranque-hilsch vortex tube,” Appl. Therm. Eng., vol. 149, pp. 658–664, 2019. DOI: 10.1016/j.applthermaleng.2018.12.067.
  • X. Guo, B. Zhang, B. Liu, and X. Xu, “A critical review on the flow structure studies of Ranque–Hilsch vortex tubes,” Int. J. Refrig., vol. 104, pp. 51–64, 2019. DOI: 10.1016/j.ijrefrig.2019.04.030.
  • R. Ghezelbash, M. Farzaneh-Gord, and M. Sadi, “Performance assessment of vortex tube and vertical ground heat exchanger in reducing fuel consumption of conventional pressure drop stations,” Appl. Therm. Eng., vol. 102, pp. 213–226, 2016. DOI: 10.1016/j.applthermaleng.2016.03.110.
  • X. Guo and B. Zhang, “Experimental investigation on a novel pressure-driven heating system with Ranque–Hilsch vortex tube and ejector for pipeline natural gas pressure regulating process,” App.Therm. Eng., vol. 152, pp. 634–642, 2019. DOI: 10.1016/j.applthermaleng.2019.02.122.
  • B. Kumar, M. Kumar, A. K. Patil, and S. Jain, “Effect of V cut in perforated twisted tape insert on heat transfer and fluid flow behavior of tube flow: an experimental study,” Exp. Heat Transf., vol. 32, no. 6, pp.524–544, 2019. DOI: 10.1080/08916152.2018.1545808.
  • R. Datt, M. S. Bhist, A. Darshan Kotiyal, R. Maithani, and A. Kumar, “Development of new correlations for heat transfer and friction loss of solid ring with combined square wing twisted tape inserts heat exchanger tube,” Exp. Heat Transf., vol. 32, no. 2, pp.179–200, 2019. DOI: 10.1080/08916152.2018.1505784.
  • R. Wan, Y. Wang, R. Kavtaradze, H. Ji, and X. He, “Research on the air-side thermal hydraulic performance of louvered fin and flat tube heat exchangers under low-pressure environment,” Exp. Heat Transf., vol. 33, no. 1, pp.81–99, 2020. DOI: 10.1080/08916152.2019.1570985.
  • R. Westley, A Bibliography and Survey of the Vortex Tube. UK: College of Aeronautics, Cranfield note, 1954.
  • S. Eiamsa-ard and P. Promvonge, “Review of Ranque–Hilsch effects in vortex tubes,” Renew. Sust. Energ. Rev., vol. 12, no. 7, pp.1822–1842, 2008. DOI: 10.1016/j.rser.2007.03.006.
  • Y. Xue, M. Arjomandi, and R. Kelso, “A critical review of temperature separation in a vortex tube,” Exp. Therm. Fluid Sci., vol. 34, no. 8, pp.1367–1374, 2010. DOI: 10.1016/j.expthermflusci.2010.06.010.
  • S. Subudhi and M. Sen, “Review of Ranque–Hilsch vortex tube experiments using air,” Renew. Sust. Energ. Rev., vol. 52, pp. 172–178, 2015. DOI: 10.1016/j.rser.2015.07.103.
  • T. K. Sharma, G. A. P. Rao, and K. M. Murthy, “Numerical analysis of a vortex tube: a review,” Arch. Comput. Methods Eng., vol. 24, no. 2, pp.251–280, 2017. DOI: 10.1007/s11831-016-9166-3.
  • V. Kirmaci and H. Kaya, “Effects of working fluid, nozzle number, nozzle material and connection type on thermal performance of a Ranque–Hilsch vortex tube: A review,” Int. J. Refrig., vol. 91, pp. 254–266, 2018. DOI: 10.1016/j.ijrefrig.2018.05.005.
  • M. H. Saidi and M. S. Valipour, “Experimental modeling of vortex tube refrigerator,” Appl. Therm. Eng., vol. 23, no. 15, pp.1971–1980, 2003. DOI: 10.1016/S1359-4311(03)00146-7.
  • S. E. Rafiee and M. M. Sadeghiazad, “Experimental and 3D CFD investigation on heat transfer and energy separation inside a counter flow vortex tube using different shapes of hot control valves,” Appl. Therm. Eng., vol. 110, pp. 648–664, 2017. DOI: 10.1016/j.applthermaleng.2016.08.166.
  • P. Promvonge and S. Eiamsa-ard, “Investigation on the vortex thermal separation in a vortex tube refrigerator,” Sci. Asia, vol. 31, no. 3, pp.215–223, 2005. DOI: 10.2306/scienceasia1513-1874.2005.31.215.
  • M. Attalla, H. Ahmed, M. S. Ahmed, and A. A. Ahmed, “Experimental investigation for thermal performance of series and parallel Ranque-Hilsch vortex tube systems,” Appl. Therm. Eng., vol. 123, pp. 327–339, 2017. DOI: 10.1016/j.applthermaleng.2017.05.084.
  • V. Kirmaci, H. Kaya, and I. Cebeci, “An experimental and energy analysis of a thermal performance of a counter flow Ranque–Hilsch vortex tube with different nozzle materials,” Int. J. Refrig., vol. 85, pp. 240–254, 2018. DOI: 10.1016/j.ijrefrig.2017.10.003.
  • H. Kaya, F. Günver, and V. Kirmaci, “Experimental investigation of thermal performance of parallel connected vortex tubes with various nozzle materials,” Appl. Therm. Eng., vol. 136, pp. 287–292, 2018. DOI: 10.1016/j.applthermaleng.2018.02.105.
  • O. Aydın and M. Baki, “An experimental study on the design parameters of a counterflow vortex tube,” Energy, vol. 31, no. 14, pp.2763–2772, 2006. DOI: 10.1016/j.energy.2005.11.017.
  • A. M. Pinar, O. Uluer, and V. Kırmacı, “Statistical assessment of counter-flow vortex tube performance for different nozzle numbers, cold mass fractions, and inlet pressures via Taguchi method,” Exp. Heat Tran., vol. 22, no. 4, pp.271–282, 2009. DOI: 10.1080/08916150903099058.
  • M. Avci, “The effects of nozzle aspect ratio and nozzle number on the performance of the Ranque–Hilsch vortex tube,” Appl. Therm. Eng., vol. 50, no. 1, pp.302–308, 2013. DOI: 10.1016/j.applthermaleng.2012.06.048.
  • M. Attalla, H. Ahmed, M. S. Ahmed, and A. A. El-Wafa, “An experimental study of nozzle number on Ranque Hilsch counter-flow vortex tube,” Exp. Therm. Fluid Sci., vol. 82, pp. 381–389, 2017. DOI: 10.1016/j.expthermflusci.2016.11.034.
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exp.Therm. Fluid Sci., vol. 1, no. 1, pp.3–17, 1988. DOI: 10.1016/0894-1777(88)90043-X.
  • H. R. Thakare and A. D. Parekh, “Experimental investigation & CFD analysis of Ranque–Hilsch vortex tube,” Energy, vol. 133, pp. 284–298, 2017. DOI: 10.1016/j.energy.2017.05.070.
  • H. M. Skye, G. F. Nellis, and S. A. Klein, “Comparison of CFD analysis to empirical data in a commercial vortex tube,” Int. J. Refrig., vol. 29, no. 1, pp.71–80, 2006. DOI: 10.1016/j.ijrefrig.2005.05.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.