Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 34, 2021 - Issue 4
386
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Effect of nano-enhanced PCM on the thermal performance of a designed cylindrical thermal energy storage system

&
Pages 356-375 | Received 31 Jan 2020, Accepted 01 Apr 2020, Published online: 20 Apr 2020

References

  • A. Ebrahimi and A. Dadvand, “Simulation of melting of a nano-enhanced phase change material (NePCM) in a square cavity with two heat source–sink pairs,” Alexandria Eng. J., vol. 54, no. 4, pp.1003–1017, 2015. DOI: 10.1016/j.aej.2015.09.007.
  • M. Kenisarin and K. Mahkamov, “Solar energy storage using phase change materials,” Renew. Sust. Energy Rev., vol. 11, no. 9, pp.1913–1965, 2007. DOI: 10.1016/j.rser.2006.05.005.
  • M. Zhang, M. A. Medina, and J. B. King, “Development of a thermally enhanced frame wall with phase-change materials for on-peak air conditioning demand reduction and energy savings in residential buildings,” Int. J. Energy Res., vol. 29, no. 9, pp.795–809, 2005. DOI: 10.1002/er.1082.
  • S. P. Raja, R. Rajavel, and D. Navaneethakrishnan, “Experimental investigation of heat recovery from diesel engine exhaust using compact heat exchanger and thermal storage using phase change material,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 3, pp. 2663–2670, 2014.
  • N. Palani and M. Rajagopal, “Experimental investigation on phase change material based thermal energy storage system for waste heat recovery from I.C. Engine exhaust,” Int. J. Appl. Eng. Res., vol. 10, pp. 22909–22913, 2015.
  • Prabhu and Asokan, “A study of waste heat recovery from diesel engine exhaust using phase change material,” IJCRGG, vol. 8, pp. 711–717, 2015.
  • Q. Shen, J. Ouyang, Y. Zhang, and H. Yang, “Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage,” Appl. Clay Sci., vol. 146, pp. 14–22, 2017. DOI: 10.1016/j.clay.2017.05.035.
  • Q. Xia, Y. Chen, C. Yang, T. Zhang, and Y. Zang, “A new model of phase change process for thermal energy storage,” Int. J. Energy Res., vol. 42, no. 12, pp.1–11, 2018. DOI: 10.1002/er.4120.
  • N. Sahan and H. O. Paksoy, “Thermal enhancement of paraffin as a phase change material with nanomagnetite,” Solar Energy Materials and Solar Cells, vol. 126, pp. 56–61, 2014. DOI: 10.1016/j.solmat.2014.03.018.
  • F. Yavari, H. R. Fard, K. Pashayi, M. A. Rafiee, A. Zamiri, Z. Yu, R. Ozisik, T. BorcaTasciuc and N. Koratkar, “Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives,” J. Phys. Chem. C., vol. 115, no. 17, pp.8753–8758, 2011. DOI: 10.1021/jp200838s.
  • S. Jesumathy, M. Udayakumar, and S. Suresh, “Experimental study of enhanced heat transfer by addition of CuO nanoparticle,” Heat and Mass Transfer, vol. 48, no. 6, pp.965–978, 2012. DOI: 10.1007/s00231-011-0945-y.
  • L. Fan, X. Fang, X. Wang, Y. Zeng, Y. Xiao, Z. Yu, X. Xu, Y. Hu and K. Cen, “Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials,” Applied Energy, vol. 110, pp. 163–172, 2013. DOI: 10.1016/j.apenergy.2013.04.043.
  • J. Shi, M. Ger, Y. Liu, Y. Fan, N. Wen, C. Lin and N. Pu, “Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives,” Carbon, vol. 51, pp. 365–372, 2013. DOI: 10.1016/j.carbon.2012.08.068.
  • M. Li, “A nano-graphite/paraffin phase change material with high thermal conductivity,” Applied Energy, vol. 106, pp. 25–30, 2013. DOI: 10.1016/j.apenergy.2013.01.031.
  • S. Park, Y. Lee, Y. S. Kim, H. M. Lee, J. H. Kim, I. W. Cheong and W. Koh, “Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell,” Colloids Surf. A Physicochem. Eng. Asp., vol. 450, pp. 46–51, 2014. DOI: 10.1016/j.colsurfa.2014.03.005.
  • Y. Yang, J. Luo, G. Song, Y. Liu, and G. Tang, “The experimental exploration of nano-Si3N4/paraffin on thermal behavior of phase change materials,” Thermochimica Acta, vol. 597, pp. 101–106, 2014. DOI: 10.1016/j.tca.2014.10.014.
  • S. Motahar, N. Nikkam, A. A. Alemrajabi, R. Khodabandeh, M. S. Toprak and M. Muhammed “A novel phase change material containing mesoporous silica nanoparticles for thermal storage: A study on thermal conductivity and viscosity,” Int. Commun. Heat Mass Transf., vol. 56, pp. 114–120, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.06.005.
  • R. M. Saeed, J. P. Schlegel, C. Castano, and R. Sawafta, “Preparation and enhanced thermal performance of novel (solid to gel) form-stable eutectic PCM modified by nano-graphene platelets,” J. Energy Storage, vol. 15, pp. 91–102, 2018. DOI: 10.1016/j.est.2017.11.003.
  • Y. Addad, M. Abutayeh, and E. Abu-Nada, “Effects of Nanofluids on the performance of a PCM-based thermal energy storage system,” J. Energy Engg., vol. 143, pp. 1–7, 2017.
  • R. Sharma, P. Ganesan, V. Tyagi, H. Metselaar, and S. Sandaran, “Thermal properties and heat storage analysis of palmitic acid-TiO 2 composite as nano-enhanced organic phase change material (NEOPCM),” Appl. Thermal Eng., vol. 99, pp. 1254–1262, 2016. DOI: 10.1016/j.applthermaleng.2016.01.130.
  • S. Mousavi, M. Siavashi, and M. M. Heyhat, “Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano-enhanced PCM and multiple horizontal fins,” Num. Heat Transf. Part A Appl., vol. 75, no. 8, pp.560–577, 2019. DOI: 10.1080/10407782.2019.1606634.
  • R. P. Singh, H. Xu, S. C. Kaushik, D. Rakshit, and A. Romagnoli, “Charging performance evaluation of finned conical thermal storage system encapsulated with nano-enhanced phase change material,” Appl. Thermal Eng., vol. 151, pp. 176–190, 2019. DOI: 10.1016/j.applthermaleng.2019.01.072.
  • J. M. Mahdi, H. I. Mohammed, E. T. Hashim, P. Talebizadehsardari, and E. C. Nsofor, “Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system,” Appl. Energy, vol. 257, pp. 113993, 2020. DOI: 10.1016/j.apenergy.2019.113993.
  • A. S. I. Irbai and Y. S. H. Najjar, “Enhancement of the melting process in the thermal energy storage system by using novel geometry,” Num. Heat Transf. Part A Appl., vol. 76, no. 12, pp.1–17, 2019. DOI: 10.1080/10407782.2019.1673109.
  • M. Gorzin, M. J. Hosseini, M. Rahimi, and R. Bahrampoury, “Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger,” J. Energy Storage, vol. 22, pp. 88–97, 2019. DOI: 10.1016/j.est.2018.12.023.
  • N. R. Jankowski and F. P. McCluskey, “A review of phase change materials for vehicle component thermal buffering,” Appl. Energy, vol. 113, pp. 1525–1561, 2014. DOI: 10.1016/j.apenergy.2013.08.026.
  • R. S. Vajjha, D. K. Das, and D. P. Kulkarni, “Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids,” Int. J. Heat Mass. Transf., vol. 53, no. 21–22, pp.4607–4618, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.032.
  • S. Ebadi, S. Tasnim, A. Aliabadi, and S. Mahmud, “Melting of nano-PCM inside a cylindrical thermal energy storage system: numerical study with experimental verification,” Energy Convers. Manag., vol. 166, pp. 241–259, 2018. DOI: 10.1016/j.enconman.2018.04.016.
  • X. Cao, Y. Yuan, B. Xiang, and F. Haghighat, “Effect of natural convection on melting performance of eccentric horizontal shell and tube latent heat storage unit,” Sust. Cities Soc., vol. 38, pp. 571–581, 2018. DOI: 10.1016/j.scs.2018.01.025.
  • A. Bejan and A. D. Kraus, Heat Transfer Handbook. New Jersey, Hoboken: John Wiley & Sons, Inc., 2003.
  • S. Seddegh, X. Wang, and A. D. Henderson, “Numerical investigation of heat transfer mechanism in a vertical shell and tube latent heat energy storage system,” Appl. Thermal Eng., vol. 87, pp. 698–706, 2015. DOI: 10.1016/j.applthermaleng.2015.05.067.
  • S. Seddegh, X. Wang, and A. D. Henderson, “A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials,” Appl. Thermal Eng., vol. 93, pp. 348–358, 2016. DOI: 10.1016/j.applthermaleng.2015.09.107.
  • T. G. S. Lago, K. A. R. Ismail, F. A. M. Lino, and A. Arabkoohsar. “Experimental correlations for the solidification and fusion times of PCM encapsulated in spherical shells,” Experimental Heat Transfer, 1–15, 2019.
  • S. K. Gupta and R. D. Misra, “An experimental investigation on pool boiling heat transfer enhancement using Cu-Al2O3 nano-composite coating,” Exp. Heat Transf., vol. 32, no. 2, pp.1–26, 2019. DOI: 10.1080/08916152.2018.1485785.
  • D. Gaona, E. Urresta, J. Marínez, and G. Guerrón, “Medium temperature phase change materials thermal characterization by the T-history method and differential scanning calorimetry,” Exp. Heat Transf., vol. 13, pp. 1–17, 2017.
  • A. Dinker, M. Agarwal, and G. D. Agarwal, “Preparation, characterization, and performance study of beeswax/expanded graphite composite as thermal storage material,” Exp. Heat Transf., vol. 30, no. 2, pp.1–23, 2017. DOI: 10.1080/08916152.2016.1185198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.