Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 34, 2021 - Issue 5
106
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Open parallelogrammic enclosures to improve Trombe wall performance by enhancing free convection. An experimental approach

ORCID Icon & ORCID Icon
Pages 411-420 | Received 19 Mar 2020, Accepted 18 May 2020, Published online: 09 Jun 2020

References

  • Z. Yilmaz and A. B. Kundakci, “An approach for energy conscious renovation of residential buildings in Istanbul by Trombe wall system,” Build. Environ, vol. 43, no. 4, pp.508–517, 2008. DOI: 10.1016/j.buildenv.2006.11.033.
  • O. Saadatian, K. Sopian, C. H. Lim, N. Asim, and M. Y. Sulaiman, “Trombe walls: A review of opportunities and challenges in research and development,” Renewable Sust. Energy Rev., vol. 16, no. 8, pp.6340–6351, 2012. DOI: 10.1016/j.rser.2012.06.032.
  • M. Bojic, K. Johannes, and F. Kuznik, “Optimizing energy and environmental performance of passive Trombe wall,” Energy Build., vol. 70, pp. 279–286, 2014. DOI: 10.1016/j.enbuild.2013.11.062.
  • G. Gan, “A parametric study of Trombe walls for passive cooling of buildings,” Energy Build., vol. 27, no. 1, pp.37–43, 1998. DOI: 10.1016/S0378-7788(97)00024-8.
  • T. Bajc, M. N. Todorovic, and J. Svorcan, “CFD analyses for passive house with Trombe wall and impact to energy demand,” Energy Build., vol. 98, pp. 39–44, 2015. DOI: 10.1016/j.enbuild.2014.11.018.
  • M. Rabani, V. Kalantar, A. A. Dehghan, and A. K. Faghih, “Experimental study of the heating performance of a Trombe wall with a new design,” Solar Energy, vol. 118, pp. 359–374, 2015. DOI: 10.1016/j.solener.2015.06.002.
  • F. Abbassi, N. Dimassi, and L. Dehmani, “Energetic study of a Trombe wall system under different Tunisian building configurations,” Energy Build., vol. 80, pp. 202–308, 2014. DOI: 10.1016/j.enbuild.2014.05.036.
  • E. Abu-Nada, “Dissipative particle dynamics simulation of natural convection using variable thermal properties,” Int. Commun. Heat Mass Transf., vol. 69, pp. 84–93, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.10.008.
  • H. F. Öztop, Y. Y. Varol, A. Koca, and M. Firat, “Experimental and numerical analysis of buoyancy-induced flow in inclined triangular enclosures,” Commun. Heat Mass Transf., vol. 39, no. 8, pp.1237–1244, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.06.011.
  • M. Sheremet, I. Pop, H. F. Öztop, and N. Abu-Hamdeh, “Natural convection of nanofluid inside a wavy cavity with a non-uniform heating: Entropy generation analysis,” Int. J. Num. Meth. Heat Fluid Flow, vol. 27, no. 4, pp.958–980, 2017. DOI: 10.1108/HFF-02-2016-0063.
  • M. Sheikholeslami, M. Darzi, and Z. Li, “Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process,” Int J Heat Mass Transf, vol. 125, pp. 1087–1095, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.155.
  • M. A. Omara, “Natural convection from a corrugated heated surface at the bottom of vented rectangular enclosure,” Exp. Heat Transf., vol. 29, no. 6, pp. 796–810, 2016. DOI: 10.1080/08916152.2015.1135200.
  • A. Saxena, V. Kishor, A. Srivastava, and S. Singh. “Whole field measurements to identify the critical Rayleigh number for the onset of natural convection in top open cavity,” Exp. Heat Transf., 2019. DOI: 10.1080/08916152.2019.1586800.
  • A. Bejan, Convection Heat Transfer, 2nd ed. New York: Wiley, 1995.
  • A. Baïri, N. Laraqi, and J. M. García de María, “Numerical and experimental study of natural convection in tilted parallelepipedic cavities for large Rayleigh numbers,” Exp. Therm. Fluid Sci., vol. 31, no. 4, pp.309–324, 2007. DOI: 10.1016/j.expthermflusci.2006.04.017.
  • S. K. W. Tou, C. P. Tso, and X. Zhang, “3-D numerical analysis of natural convective liquid cooling of a 3 × 3 heater array in rectangular enclosures,” Int. J. Heat Mass Transf., vol. 42, no. 17, pp.3231–3244, 1999. DOI: 10.1016/S0017-9310(98)00379-2.
  • C. P. Tso, L. F. Jin, S. K. W. Tou, and X. F. Zhang, “Flow pattern evolution in natural convection cooling from an array of discrete heat sources in a rectangular cavity at various orientations,” Int. J. Heat Mass Transf., vol. 47, no. 19–20, pp.4061–4073, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.05.022.
  • S. S. Ghadikolaei, K. Hosseinzadeh, and D. D. Ganji, “Analysis of unsteady MHD Eyring-Powell squeezing flow in stretching channel with considering thermal radiation and Joule heating effect using AGM,” Case Stud. Therm. Eng., vol. 10, pp. 579–594, 2017. DOI: 10.1016/j.csite.2017.11.004.
  • A. Baïri, E. Zarco-Pernia, and J.-M. García de María, “A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity,” Appl. Therm. Eng., vol. 63, no. 1, pp.304–322, 2014. DOI: 10.1016/j.applthermaleng.2013.10.065.
  • A. Sielaff, et al., “Temperature measurement using infrared thermometry within semi-transparent media,” Exp. Heat Transf., vol. 32, no. 6, pp. 545–565, 2019. DOI: 10.1080/08916152.2018.1549622.
  • S. Caliskan, A. Dogan, and I. Kotcioglu, “Experimental investigation of heat transfer from different pin fin in a rectangular channel,” Exp. Heat Transf., vol. 32, no. 4, pp. 376–392, 2019. DOI: 10.1080/08916152.2018.1526228.
  • S. A. Atouei, et al., “Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods,” Appl. Therm. Eng., vol. 89, pp. 299–305, 2015. DOI: 10.1016/j.applthermaleng.2015.05.084.
  • M. Ramezanpour and R. Hosseini. “An experimental study of natural convection in vertical annulus with helical fin,” Exp. Heat Transf., 2019. DOI: 10.1080/08916152.2019.1614114.
  • J. P. Guinart, Conception et réalisation d’un montage de caractérisation thermique des matériaux par la méthode de la source transitoire plane (TPS). Research Master’s thesis, specialité Energétique, Propulsion Aéronautique et Terrestre, Environnement (EPATE), Univ de Paris, Laboratoire Thermique Interfaces Environnement (LTIE-GTE EA 4415), 2010.
  • W. Qing-Cheng, Z. C. Zhao-Chun, and Z. Xiang-Ping, “The study of the temperature field in an infinite slab under line and plane heat source,” Int. J. Numer. Methods Heat Fluid Flow, vol. 25, no. 1, pp.25–32, 2015. DOI: 10.1108/HFF-06-2013-0192.
  • Hot Disk TPS 2500S, 2020. http://www.hotdiskinstruments.com/products/instruments-for-thermal-conductivity-measurements/tps-2500-s.html
  • J. M. García de María, A. Baïri, and V. A. F. Costa, “Empirical correlations at high Ra for steady-state free convection in 2D air-filled parallelogrammic enclosures with isothermal discrete heat sources,” Int J. Heat Mass Transf., vol. 53, no. 19–20, pp.3831–3838, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.04.036.
  • A. Baïri, N. Laraqi, and J. M. García de María, “Importance of radiative heat exchange in 2D closed diode cavities applied to solar collectors and building,” Int. J. Sustain. Energy, vol. 24, no. 1, pp.33–44, 2005. DOI: 10.1080/14786450512331325901.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.