Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 34, 2021 - Issue 6
388
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Heat transfer characteristics and boiling heat transfer performance of novel Ag/ZnO hybrid nanofluid using free surface jet impingement

ORCID Icon &
Pages 531-546 | Received 26 Apr 2020, Accepted 02 Jul 2020, Published online: 15 Jul 2020

References

  • B. R. Hoilworth and M. Durbin, “Impingement cooling of electronics,” J. Heat Transfer, vol. 114, no. 3, pp. 607–613, 1992. DOI: 10.1115/1.2911324.
  • Q. Liu, “Study of heat transfer characteristics of impinging air jet using pressure and temperature sensitive luminescent paint,” Aerosp. Eng., pp. 175, 2006.
  • E. Lai and M. A. Moss, “A review of heat transfer data for single circular jet impingement,” vol. 13, pp. 106–115, 1992.
  • E. J. Watson, “The radial spread of a liquid jet over a horizontal plane,” J. Fluid Mech., vol. 20, no. 3, pp. 481–499, 1964. DOI: 10.1017/S0022112064001367.
  • J. Stevens and B. W. Webb, “Measurements of the free surface flow structure under an impinging, free liquid jet,” J. Heat Transfer, vol. 114, no. 1, pp. 79–84, 1992. DOI: 10.1115/1.2911271.
  • A. H. Nobari, V. Prodanovic, and M. Militzer, “Heat transfer of a stationary steel plate during water jet impingement cooling,” Int. J. Heat Mass Transfer, vol. 101, pp. 1138–1150, 2016. DOI:10.1016/j.ijheatmasstransfer.2016.05.108.
  • K. Zhu, P. Yu, N. Yuan, and J. Ding, “Transient heat transfer characteristics of array-jet impingement on high-temperature flat plate at low jet-to-plate distances,” Int. J. Heat Mass Transfer, vol. 127, pp. 413–425, 2018. DOI:10.1016/j.ijheatmasstransfer.2018.07.099.
  • H. Wang, W. Yu, and Q. Cai, “Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling,” J. Mater. Process. Technol., vol. 212, no. 9, pp. 1825–1831, 2012. DOI: 10.1016/j.jmatprotec.2012.04.008.
  • M. A. Sabiha, R. Saidur, S. Hassani, Z. Said, and S. Mekhilef, “Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids,” Energy Convers. Manage., vol. 105, pp. 1377–1388, 2015. DOI:10.1016/j.enconman.2015.09.009.
  • S. S. Chougule and S. K. Sahu, “Comparative study on heat transfer enhancement of low volume concentration of Al2O3-water and carbon nano-tube-water nano-fluids in transition regime using helical screw tape inserts,” Exp. Heat Transfer, vol. 29, pp. 17–36, 2016. DOI:10.1080/08916152.2014.926432.
  • A. Baïri and N. Laraqi, “Experimental quantification of natural convective heat transfer within annulus space filled with a H 2 O-Cu nanofluid saturated porous medium. Application to electronics cooling,” Exp. Heat Transfer, vol. 32, no. 4, pp. 364–375, 2019. DOI: 10.1080/08916152.2018.1526230.
  • S. D. Barewar, S. Tawri, and S. S. Chougule, “Heat transfer characteristics of free nanofluid impinging jet on flat surface with different jet to plate distance: an experimental investigation,” Chem. Eng. Process. Process Intensif., vol. 136, pp. 1–10, 2019. DOI:10.1016/j.cep.2018.12.001.
  • J. Lv, et al., “Experimental investigation of free single jet impingement using SiO2-water nanofluid,” Exp. Therm Fluid Sci., vol. 84, pp. 39–46, 2017. DOI:10.1016/j.expthermflusci.2017.01.010.
  • B. Jaberi, T. Yousefi, B. Farahbakhsh, and M. Z. Saghir, “Experimental investigation on heat transfer enhancement due to Al2O3-water nanofluid using impingement of round jet on circular disk,” Int. J. Therm. Sci., vol. 74, pp. 199–207, 2014. DOI:10.1016/j.ijthermalsci.2013.06.013.
  • O. Zeitoun, M. Ali, and H. Al-Ansary, “The effect of particle concentration on cooling of a circular horizontal surface using nanofluid jets,” Nanoscale Microscale Thermophys. Eng., vol. 17, no. 2, pp. 154–171, 2013. DOI: 10.1080/15567265.2012.749963.
  • M. Modak, A. K. Sharma, and S. K. Sahu, “An experimental investigation on heat transfer enhancement in circular jet impingement on hot surfaces by using Al2O3/water nano-fluids and aqueous high-alcohol surfactant solution,” Exp. Heat Transfer, vol. 31, pp. 275–296, 2018. DOI:10.1080/08916152.2017.1381655.
  • I. Sarkar, et al., “Application of TiO 2 nanofluid-based coolant for jet impingement quenching of a hot steel plate,” Exp. Heat Transfer, vol. 32, no. 4, pp. 322–336, 2019. DOI: 10.1080/08916152.2018.1517835.
  • M. Modak, et al., “Experimental investigation of heat transfer characteristics of the hot surface using Al2O3-water nanofluids,” Chem. Eng. Process. Process Intensif, vol. 91, pp. 104–113, 2015. DOI:10.1016/j.cep.2015.03.006.
  • S. Mitra, S. K. Saha, S. Chakraborty, and S. Das, “Study on boiling heat transfer of water-TiO 2 and water-MWCNT nanofluids based laminar jet impingement on heated steel surface,” Appl. Therm. Eng., vol. 37, pp. 353–359, 2012. DOI:10.1016/j.applthermaleng.2011.11.048.
  • M. M. Sorour, W. M. El-Maghlany, M. A. Alnakeeb, and A. M. Abbass, “Experimental study of free single jet impingement utilizing high concentration SiO nanoparticles water base nanofluid,” Appl. Therm. Eng., vol. 160, pp. 114019, 2019. DOI:10.1016/j.applthermaleng.2019.114019.
  • J. A. Ranga Babu, K. K. Kumar, and S. Srinivasa Rao, “State-of-art review on hybrid nanofluids,” Renewable Sustainable Energy Rev., vol. 77, pp. 551–565, 2017. DOI:10.1016/j.rser.2017.04.040.
  • J. Sarkar, P. Ghosh, and A. Adil, “A review on hybrid nano fl uids: Recent research, development and applications,” Renewable Sustainable Energy Rev., vol. 43, pp. 164–177, 2015. DOI:10.1016/j.rser.2014.11.023.
  • M. Gupta, et al., “Up to date review on the synthesis and thermophysical properties of hybrid nanofluids,” J. Clean. Prod., vol. 190, pp. 169–192, 2018. DOI:10.1016/j.jclepro.2018.04.146.
  • T. Tayebi and A. J. Chamkha, “Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder,” J. Therm. Anal. Calorim., vol. 139, no. 3, pp. 2165–2179, 2020. DOI: 10.1007/s10973-019-08651-5.
  • P. O. Sharma, S. D. Barewar, and S. S. Chougule, “Experimental investigation of heat transfer enhancement in pool boiling using novel Ag/ZnO hybrid nanofluids,” J. Therm. Anal. Calorim., 2020. DOI: 10.1007/s10973-020-09922-2.
  • T. Tayebi and H. F. Öztop, “Entropy production during natural convection of hybrid nanofluid in an annular passage between horizontal confocal elliptic cylinders,” Int. J. Mech. Sci., vol. 171, pp. 105378, 2020. DOI:10.1016/j.ijmecsci.2019.105378.
  • J. M. Jha, et al., “Heat transfer from a hot moving steel plate by air-atomized spray impingement,” Exp. Heat Transfer, vol. 29, no. 1, pp. 78–96, 2016. DOI: 10.1080/08916152.2014.945051.
  • M. Chen, et al., “An experimental investigation on sunlight absorption characteristics of silver nanofluids,” Solar Energy, vol. 115, pp. 85–94, 2015. DOI:10.1016/j.solener.2015.01.031.
  • S. K. Mechiri, V. Vasu, and A. Venu Gopal, “Investigation of thermal conductivity and rheological properties of vegetable oil based hybrid nanofluids containing Cu–Zn hybrid nanoparticles,” Exp. Heat Transfer, vol. 30, no. 3, pp. 205–217, 2017. DOI: 10.1080/08916152.2016.1233147.
  • L. Megatif, A. Ghozatloo, A. Arimi, and M. Shariati-Niasar, “Investigation of laminar convective heat transfer of a Novel Tio2 –carbon nanotube hybrid water-based nanofluid,” Exp. Heat Transfer, vol. 29, no. 1, pp. 124–138, 2016. DOI: 10.1080/08916152.2014.973974.
  • S. K. Singh and J. Sarkar, “Experimental hydrothermal characteristics of concentric tube heat exchanger with V-cut twisted tape turbulator using PCM dispersed mono/hybrid nanofluids,” Exp. Heat Transfer, vol. 00, pp. 1–22, 2020. DOI:10.1080/08916152.2020.1772412.
  • J. Jadhav and S. Biswas, “Structural and electrical properties of ZnO:Ag core-shell nanoparticles synthesized by a polymer precursor method,” Ceram. Int., vol. 42, no. 15, pp. 16598–16610, 2016. DOI: 10.1016/j.ceramint.2016.07.081.
  • S. D. Barewar, S. S. Chougule, J. Jadhav, and S. Biswas, “Synthesis and thermo-physical properties of water-based novel Ag/ZnO hybrid nanofluids,” J. Therm. Anal. Calorim., vol. 134, no. 3, pp. 1493–1504, 2018. DOI: 10.1007/s10973-018-7883-6.
  • S. D. Barewar, S. Tawri, and S. S. Chougule, “Experimental investigation of thermal conductivity and its ANN modeling for glycol-based Ag/ZnO hybrid nanofluids with low concentration,” J. Therm. Anal. Calorim., vol. 6, 2019. DOI: 10.1007/s10973-019-08618-6.
  • S. A. Angayarkanni and J. Philip, “Review on thermal properties of nanofluids: recent developments,” Adv .Colloid Interface Sci., vol. 225, pp. 146–176, 2015. DOI:10.1016/j.cis.2015.08.014.
  • S. D. Barewar, S. S. Chougule, J. Jadhav, and S. Biswas, “Synthesis and characterization of water based ZnO and Ag Coated ZnO nanofluids for heat transfer applications references,”  Journal of Thermal Analysis and Calorimetry., vol. 231, 2017.
  • B. Bakthavatchalam, K. Habib, R. Saidur, S. Shahabuddin, and B. B. Saha, “Influence of solvents on the enhancement of thermophysical properties and stability of multi-walled carbon nanotubes nanofluid,” Nanotechnology, vol. 31, no. 23, pp. 235402, 2020. DOI: 10.1088/1361-6528/ab79ab.
  • R. B. Abernethy, R. P. Benedict and R. B. Dowdell, “ASME Measurement Uncertainty,” J. Fluids Eng., vol. 107, pp. 161, 2009. DOI: 10.1115/1.3242450.
  • X. Zhang, Y. Wang, D. Zhao, and J. Guo, “Improved thermal performance of heat exchanger with TiO2 nanoparticles coated on the surfaces,” Appl. Therm. Eng., vol. 112, pp. 1153–1162, 2017. DOI:10.1016/j.applthermaleng.2016.10.148.
  • M. Attalla and M. Salem, “experimental investigation of heat transfer for a jet impinging obliquely on a flat surface,” Exp. Heat Transfer, vol. 28, no. 4, pp. 378–391, 2015. DOI: 10.1080/08916152.2014.890963.
  • E. M. Sparrow, R. J. Goldstein, and M. A. Rouf, “Effect of nozzle - surface separation distance on impingement heat transfer for a jet in a crossflow,” Am. Soc. Mech. Eng. (Paper), pp. 528–533, 1976.
  • N. Zuckerman and N. Lior. Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling. Elsevier Masson SAS. 2006. DOI: 10.1016/S0065-2717(06)39006-5.
  • Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transfer, vol. 43, no. 19, pp. 3701–3707, 2000. DOI: 10.1016/S0017-9310(99)00369-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.