Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 34, 2021 - Issue 6
580
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network

, ORCID Icon &
Pages 547-563 | Received 27 Mar 2020, Accepted 06 Jul 2020, Published online: 21 Jul 2020

References

  • L. Tijing, “A study on heat transfer enhancement using straight and twisted internal fin insert,” Int. Commun. Heat Mass Transfer, vol. 33, no. 1, pp.719–726, 2006. DOI: 10.1016/j.icheatmasstransfer.2006.02.006.
  • K. Yakut, “Optimum design PARAMETERS of a heat exchanger having hexagonal fins,” Appl. Energy, vol. 83, no. 2, pp.82–98, 2006. DOI: 10.1016/j.apenergy.2005.01.007.
  • M. Didarul, “Study on heat transfer and fluid flow characteristics with short rectangular plate fin of different pattern,” Exp. Therm. Fluid Sci., vol. 31, no. 4, pp.367–379, 2007. DOI: 10.1016/j.expthermflusci.2006.05.009.
  • A. Khalled, “Heat transfer enhancement in hairy fin system,” Appl. Therm. Eng., vol. 27, no. 1, pp.250–257, 2007. DOI: 10.1016/j.applthermaleng.2006.04.012.
  • K. Bilen, M. Cetin, H. Gul, and T. Balta, “The investigation of groove geometry effect on heat transfer for internally grooved tubes,” Appl. Therm. Eng., vol. 29, no. 4, pp.753–761, 2009. DOI: 10.1016/j.applthermaleng.2008.04.008.
  • J. Zhang, Y. Zhao, Y. Diao, and Y. Zhang, “An experimental study on fluid flow and heat transfer in a multiport minichannel flat tube with micro-fin structures,” Int. J. Heat Mass Transfer, vol. 84, pp. 511–520, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.049.
  • M. Eren and S. Calıskan, “Effect of grooved pin-fins in a rectangular channel on heat transfer augmentation and friction factor using Taguchi method,” Int. J. Heat Mass Transfer, vol. 102, pp. 1108–1122, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.07.005.
  • V. Badescu, “Smooth and non-smooth optimal pin fin profiles beyond the Schmidt optimality assumption and “length-of-arc” approximation,” Appl. Math. Model., vol. 47, pp. 358–380, 2017. DOI: 10.1016/j.apm.2017.03.011.
  • S. Caliskan, A. Dogan, and I. Kotcioglu, “Experimental investigation of heat transfer from different pin fin in a rectangular channel,” Exp. Heat Transfer, vol. 32, no. 4, pp.376–392, 2019. DOI: 10.1080/08916152.2018.1526228.
  • A. S. Patil, S. S. Kore, and N. K. Sane, “Thermal performance of tube exchanger enhanced with hexagonal ring turbulators,” Exp. Heat Transfer, vol. 33, no. 5, pp.455–470, 2020. DOI: 10.1080/08916152.2019.1656302.
  • R. Maithani and A. Kumar, “Correlations development for Nusselt number and friction factor in a dimpled surface heat exchanger tube,” Exp. Heat Transfer, vol. 33, no. 2, pp.101–122, 2020. DOI: 10.1080/08916152.2019.1573863.
  • K. L. Kirsch and K. A. Thole, “Pressure loss and heat transfer performance for additively and conventionally manufactured pin fin arrays,” Int. J. Heat Mass Transfer, vol. 108, pp. 2502–2513, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.095.
  • V. T. Morgan, “The overall convective heat transfer from smooth circular cylinders,” Adv. Heat Transfer, vol. 11, pp. 199–264, 1975.
  • R. M. Fand and J. Brucker, “A correlation for heat transfer by natural convection from horizontal cylinders that accounts for viscous dissipation,” Int. J. Heat Mass Transfer, vol. 26, pp. 709–726, 1983. DOI: 10.1016/0017-9310(83)90021-2.
  • G. J. Zdaniuk, L. M. Chamra, and D. K. Walters, “Heat transfer and friction in helically-finned tubes using artificial neural networks,” Int. J. Heat Mass Transfer, vol. 50, no. 23, pp.4713–4723, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.03.043.
  • A. Pacheco-Vega, S. Mihir, K. T. Yang, and L. M. Rodney, “Neural network analysis of fin-tube refrigerating heat exchanger with limited experimental data,” Int. J. Heat Mass Transfer, vol. 44, no. 4, pp.763–770, 2001.
  • M. M. Tafarroj, et al., “Artificial neural network modeling of nanofluid flow in a microchannel heat sink using experimental data,” Int. Commun. Heat Mass Transfer, vol. 86, pp. 25–31, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.05.020.
  • M. H. Esfe, et al., “Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40 %) nanofluid using experimental data,” J. Therm. Anal. Calorim., vol. 126, pp. 837–843, 2016. DOI: 10.1007/s10973-016-5469-8.
  • M. Afrand, D. Toghraie, and N. Sina, “Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network,” Int. Commun. Heat Mass Transfer, vol. 75, pp. 262–269, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.04.023.
  • J. Krzywanski and W. Nowak, “Modeling of heat transfer coefficient in the furnace of CFB boilers by artificial neural network approach,” Int. J. Heat Mass Transfer, vol. 55, pp. 4246–4253, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.066.
  • M. Sheikholeslami, et al., “Effect of magnetic field on Cu–water nanofluid heat transfer using GMDH-type neural network,” Neural Comput. Appl., vol. 25, no. 1, pp.171–178, 2014. DOI: 10.1007/s00521-013-1459-y.
  • M. A. Hakeem and M. Kamil, “Analysis of artificial neural network in prediction of circulation rate for a natural circulation vertical thermosiphon reboiler,” Appl. Therm. Eng., vol. 112, pp. 1057–1069, 2017. DOI: 10.1016/j.applthermaleng.2016.10.119.
  • M. A. Hakeem, M. Kamil, and M. Asif, “Prediction of boiling heat transfer coefficients in pool boiling of liquids using artificial neural network,” J. Sci. Ind. Res., vol. 73, pp. 536–540, 2014.
  • J. Wang and B. Malakooti, “A feedforward neural network for multiple criteria decision making,” Comput. Oper. Res., vol. 19, no. 2, pp.151–167, 1992. DOI: 10.1016/0305-0548(92)90089-N.
  • Y. Islamoglu and A. Kurt, “Heat transfer analysis using ann’s with experimental data for air flowing in corrugated channels,” Int. J. Heat Mass Transfer, vol. 47, pp. 1361–1365, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.07.031.
  • H. Peng and X. Ling, “Neural networks analysis of thermal characteristics on plate-fin heat exchangers with limited experimental data,” Appl. Therm. Eng., vol. 29, no. 11–12, pp.2251–2256, 2009. DOI: 10.1016/j.applthermaleng.2008.11.011.
  • A. Parcheco-Vega, G. Diaz, M. Sen, K. T. Yang, and R. L. McClain, “Heat rate predictions air–water heat exchangers using correlations and neural networks,” J. Heat Transfer Trans. ASME, vol. 123, no. 2, pp.348–354, 2001. DOI: 10.1115/1.1351167.
  • J. Thibault and B. P. A. Grandjean, “A neural network methodology for heat transfer data analysis,” Int. J. Heat Mass Transfer, vol. 34, no. 8, pp.2063–2070, 1991. DOI: 10.1016/0017-9310(91)90217-3.
  • A. J. Ghajar, L. M. Tam, and S. C. Tam, “Improved heat transfer correlation in the transition region for a circular tube with three inlet configurations using artificial neural networks,” Heat Transfer Eng., vol. 25, no. 2, pp.30–40, 2004. DOI: 10.1080/01457630490276097.
  • M. J. Zarei, H. R. Ansari, and P. Keshavarz, “Prediction of pool boiling heat transfer coefficient for various nano-refrigerants utilizing artificial neural networks,” J. Therm. Anal. Calorim., vol. 139, pp. 3757–3768, 2020. DOI: 10.1007/s10973-019-08746-z.
  • S. Haykin, Neural Networks: A Comprehensive Foundation. 2th ed, USA: Prentice Hall PTR, 2004, pp. 41.
  • Nouri-Borujerdi and M. Nakhchi, “Prediction of local shear stress and heat transfer between internal rotating cylinder and longitudinal cavities on stationary cylinder with various shapes,” Int. J. Therm. Sci, vol. 138, pp. 512–520, 2019. DOI: 10.1016/j.ijthermalsci.2019.01.016.
  • S. J. Kline and F. A. McClintock, “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng., vol. 75, pp. 3–8, 1953.
  • J. P. Holman, Heat Transfer. 10th ed, New York: McGraw-Hill, 1966, pp. 273.
  • S. J. Kline and F. A. McClintock, “Describing uncertainties in single sample experiments,” Mech. Eng., vol. 75, pp. 385–387, 1953.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.