Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 35, 2022 - Issue 2
292
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Transparent nanofluids with high thermal conductivity for improved convective thermal management of optoelectronic devices

, , , , , , , , , & show all
Pages 183-195 | Received 26 Jun 2020, Accepted 24 Sep 2020, Published online: 20 Oct 2020

References

  • A. L. Moore and L. Shi, “Emerging challenges and materials for thermal management of electronics,” Mater. Today, vol. 17, no. 4, pp.163–174, 2014. DOI: https://doi.org/10.1016/j.mattod.2014.04.003.
  • S. S. Anandan and V. Ramalingam, “Thermal management of electronics: A review of literature,” Therm. Sci., vol. 12, no. 2, pp.5–26, 2008. DOI: https://doi.org/10.2298/TSCI0802005A.
  • H. Y. Zhang, D. Pinjala, and P.-S. Teo, “Thermal management of high power dissipation electronic packages: from air cooling to liquid cooling,” Proc. 5th Electron. Packag. Technol. Conf., pp. 620–625, 2003.
  • A. Giesen, et al., “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B, vol. 58, pp. 365–372, 1994.
  • R. Lavi, et al., “885 nm high-power diodes end-pumped Nd: YAG laser,” Opt. Commun., vol. 195, pp. 427–430, 2001.
  • X. Liu, M. H. Hu, C. G. Caneau, R. Bhat, and C. E. Zah, “Thermal management strategies for high power semiconductor pump lasers,” IEEE Trans. Compon. Packaging Technol., vol. 29, pp. 268–276, 2006.
  • S. A. Payne, et al., “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron, vol. 3, pp. 71–81, 1997.
  • Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat Fluid Flow, vol. 21, pp. 58–64, 2000.
  • S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, “Heat transfer enhancement by using nanofluids in forced convection flows,” Int. J. Heat Fluid Flow, vol. 26, pp. 530–546, 2005.
  • D. Wen, G. Lin, S. Vafaei, and K. Zhang, “Review of nanofluids for heat transfer applications,” Particuology, vol. 7, pp. 141–150, 2009.
  • A. Baïri and N. Laraqi, “Experimental quantification of natural convective heat transfer within annulus space filled with a H2O-Cu nanofluid saturated porous medium. Application to electronics cooling.” Exp. Heat Transfer, vol. 32, pp. 364–375, 2019.
  • C. T. Nguyen, G. Roy, C. Gauthier, and N. Galanis, “Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system,” Appl. Therm. Eng., vol. 27, pp. 1501–1506, 2007.
  • S. Z. Heris, M. N. Esfahany, and S. G. Etemad, “Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube,” Int. J. Heat Fluid Flow, vol. 28, pp. 203–210, 2007.
  • M. Attalla and H. M. Maghrabie, “An experimental study on heat transfer and fluid flow of rough plate heat exchanger using Al2O3/water nanofluid,” Exp. Heat Transfer, vol. 33, pp. 261–281, 2020.
  • M. Sheikholeslami, M. M. Rashidi, and D. D. Ganji, “Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid,” Comput. Methods Appl. Mech. Eng., vol. 294, pp. 299–312, 2015.
  • Y. Ding, H. Alias, D. Wen, and R. A. Williams, “Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids),” Inter. J. Heat Mass Transf., vol. 49, pp. 240–250, 2006.
  • S. D. Barewar, S. S. Chougule, J. Jadhav, and S. Biswas, “Synthesis and thermo-physical properties of water-based novel Ag/ZnO hybrid nanofluids,” J. Therm. Anal. Calorim., vol. 134, pp. 1493–1504, 2018.
  • S. D. Barewar and S. S. Chougule. “Heat transfer characteristics and boiling heat transfer performance of novel Ag/ZnO hybrid nanofluid using free surface jet impingement,” Exp. Heat Transfer, 2020. DOI: https://doi.org/10.1080/08916152.2020.1792587.
  • V. Trisaksri and S. Wongwises, “Critical review of heat transfer characteristics of nanofluids,” Renew. Sustain. Energy Rev., vol. 11, pp. 512–523, 2007.
  • W. Yu, D. M. France, J. L. Routbort, and S. U. Choi, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transf. Eng., vol. 29, pp. 432–460, 2008.
  • A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” Inter. J. Heat Mass Transf., vol. 54, pp. 4051–4068, 2011.
  • F. Yu, et al., “Dispersion stability of thermal nanofluids,” Prog. Nat. Sci., vol. 27, pp. 531–542, 2017.
  • B. Fu, et al., “Optical nanofluids for direct absorption-based solar-thermal energy harvesting at medium-to-high temperatures,” Curr. Opin. Chem. Eng., vol. 25, pp. 51–56, 2019.
  • P. Tao, et al., “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem., vol. 21, pp. 18623–18629, 2011.
  • P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine,” Acc. Chem. Res., vol. 41, pp. 1578–1586, 2008.
  • M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D: Appl. Phys., vol. 44, pp. 283001, 2011.
  • X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B, vol. 58, pp. 3–7, 2007.
  • Z. Wang, et al., “Rapid charging of thermal energy storage materials through plasmonic heating,” Sci. Rep., vol. 4, pp. 6246, 2014.
  • H. Hiramatsu and F. E. Osterloh, “A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants,” Chem. Mater., vol. 16, pp. 2509–2511, 2004.
  • S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev., vol. 35, pp. 209–217, 2006.
  • K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater., vol. 12, pp. 306–313, 2000.
  • Y. Q. He, S. P. Liu, L. Kong, and Z. F. Liu, “A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering,” Spectrochim. Acta A, vol. 61, pp. 2861–2866, 2005.
  • C. Lü and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem., vol. 19, pp. 2884–2901, 2009.
  • W. H. Azmi, K. V. Sharma, R. Mamat, G. Najafi, and M. S. Mohamad, “The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids–a review,” Renew. Sustain. Energy Rev., vol. 53, pp. 1046–1058, 2016.
  • P. Keblinski, S. R. Phillpot, U. S. Choi, and J. A. Eastman, “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” Int. J. Heat Mass Transf., vol. 45, pp. 855–863, 2002.
  • J. Koo and C. Kleinstreuer, “A new thermal conductivity model for nanofluids,” J. Nanoparticle Res., vol. 6, pp. 577–588, 2004.
  • K. J. Koo and C. Kleinstreuer, “Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids,” Int. J. Heat Mass Transf., vol. 32, pp. 1111–1118, 2005.
  • J. C. Han, J. S. Park, and C. K. Lei, “Heat transfer enhancement in channels with turbulence promoters,” J. Eng. Gas Turbines Power, vol. 17, pp. 628–635, 1985.
  • S. Bhattacharyya, A. I. Bashir, K. Dey, and R. Sarkar, “Effect of novel short-length wavy-tape turbulators on fluid flow and heat transfer: experimental study,” Exp. Heat Transfer, vol. 33, pp. 335–354, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.