Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 35, 2022 - Issue 5
192
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Analysis of the convective heat transfer and equivalent thermal conductivity of functional paper honeycomb wall plates

, , &
Pages 577-590 | Received 28 Dec 2020, Accepted 15 Apr 2021, Published online: 30 Apr 2021

References

  • H. G. Allen, “CHAPTER 1 - INTRODUCTION,” in Analysis and Design of Structural Sandwich Panels, H. G. Allen, Ed. Pergamon: Oxford, 1969, pp. 1–7.
  • W. Miller, C. W. Smith, F. Scarpa, and K. E. Evans, “Flatwise buckling optimization of hexachiral and tetrachiral honeycombs, Compos,” Sci. Technol., vol. 70, pp. 1049–1056, 2010. DOI:10.1016/j.compscitech.2009.10.022.
  • J. X. Chen, Q. Zu, G. Wu, J. Xie, and W. Y. Tuo, “Review of beetle forewing structures and their biomimetic applications in China: (II) On the three-dimensional structure, modeling and imitation,” Mater. Sci. Eng. C, vol. 55, pp. 620–633, 2015. DOI:10.1016/j.msec.2015.05.064.
  • A. C. Marshall, “Sandwich Construction,” in Handbook of Composites, S. T. Peters, Ed. MA: Springer US, Boston, 1998, pp. 254–290.
  • V. F. Kutyinov and A. A. Ionov, “Specific features of composite-material structural design,” in Composite Materials in Aerospace Design, G. I. Zagainov and G. E. Lozino-Lozinsky, Eds. Netherlands, Dordrecht: Springer, 1996, pp. 1–117.
  • K. E. Semple, et al., “Properties of commercial kraft paper honeycomb furniture stock panels conditioned under 65 and 95 percent relative humidity,” For. Prod. J., vol. 65, pp. 106–122, 2015.
  • L. M. Zheng, D. F. Wu, B. Pan, Y. W. Wang, and B. Sun, “Experimental investigation and numerical simulation of heat-transfer properties of metallic honeycomb core structure up to 900 °C,” Appl. Therm. Eng., vol. 60, no. 1–2, pp. 379–386, 2013. DOI: 10.1016/j.applthermaleng.2013.07.014.
  • W. Dafang et al., “Thermal protection performance of metallic honeycomb core panel structures in non-steady thermal environments,” Exp. Heat Transfer, vol. 29, no. 1, pp. 53–77, 2014. DOI: 10.1080/08916152.2014.940433.
  • R. T. Swann and C. M. Pittman, Analysis of Effective Thermal Conductivities of Honeycomb-core and Corrugated-core Sandwich Panels. Washington D.C.: National Aeronautics and Space Administration, 1961, pp. 11–43.
  • M. Arulanantham and N. D. Kaushika, “Coupled radiative and conductive thermal transfers across transparent honeycomb insulation materials,” Appl. Therm. Eng., vol. 16, no. 3, pp. 209–217, 1996. DOI: 10.1016/1359-4311(95)00070-4.
  • K. Daryabeigi, “Heat transfer in adhesively bonded honeycomb core panels,” 35th AIAA Thermophysics Conference, In: Proceedings of the 35th AIAA Thermo-physics Conference, Anaheim, Canada, 2001.
  • Y. H. You, et al., “A three-dimensional numerical model of unsteady flow and heat transfer in ceramic honeycomb regenerator,” Appl. Therm. Eng., vol. 108, pp. 1243–1250, 2016. DOI:10.1016/j.applthermaleng.2016.08.035.
  • X. H. Hou, Z. C. Deng, and G. S. Yin, “Application of transfer matrix method in heat transfer performance analysis of multi-re-entrant honeycomb structures,” Heat Mass Transfer., vol. 50, no. 12, pp. 1765–1782, 2014. DOI: 10.1007/s00231-014-1352-y.
  • B. P. Saha, R. Johnson, and V. Jayaram, “Comparative evaluation of thermal conductivity of zirconia solid and honeycomb structures,” Exp. Heat Transfer, vol. 25, no. 4, pp. 267–281, 2012. DOI: 10.1080/08916152.2011.582570.
  • F. Yuan, H. B. Wang, P. L. Zhou, A. J. Xu, and D. F. He, “Heat transfer performances of honeycomb regenerators with square or hexagon cell opening,” Appl. Therm. Eng., vol. 125, pp. 790–798, 2017. DOI:10.1016/j.applthermaleng.2017.07.079.
  • Z. P. Ren, L. N. Zhang, and L. Jia, “Natural convection in enclosure combined with conduction and radiation,” J. Eng. Thermophys., vol. 03, pp. 245–250, 1988.
  • O. G. Martynenko and P. P. Khramtsov, “Natural convection in enclosures,” in Free-Convective Heat Transfer: With Many Photographs of Flows and Heat Exchange chap. 4, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 279–343.
  • N. C. Markatos and K. A. Pericleous, “Laminar and turbulent natural convection in an enclosed cavity,” Int. J. Heat Mass Transfer, vol. 27, no. 5, pp. 755–772, 1984. DOI: 10.1016/0017-9310(84)90145-5.
  • G. De Vahl Davis, “Natural convection of air in a square cavity: a bench mark numerical solution,” Int. J. Numer. Methods Fluids, vol. 3, no. 3, pp. 249–264, 1983. DOI: 10.1002/fld.1650030305.
  • G. Barakos, E. Mitsoulis, and D. Assimacopoulos, “Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions,” Int. J. Numer. Methods Fluids, vol. 18, no. 7, pp. 695–719, 1994. DOI: 10.1002/fld.1650180705.
  • S. Caliskan, A. Dogan, and I. Kotcioglu, “Experimental investigation of heat transfer from different pin fin in a rectangular channel,” Exp. Heat Transfer, vol. 32, no. 4, pp. 376–392, 2019. DOI: 10.1080/08916152.2018.1526228.
  • J. X. Chen, et al., “Integrated honeycomb structure of a beetle forewing and its imitation,” Mater. Sci. Eng. C, vol. 32, no. 3, pp. 613–618, 2012. DOI: 10.1016/j.msec.2011.12.020.
  • J. X. Chen, X. M. Zhang, O. Yoji, J. Xie, and M. Y. Xu, “Beetle elytron plate and the synergistic mechanism of a trabecular-honeycomb core structure,” Sci. China. Technol. Sci., vol. 62, pp. 87–93, 2019. DOI: 10.1007/s11431-018-9290-1.
  • J. X. Chen, -Q.-Q. Ni, Y. L. Xu, and M. Iwamoto, “Lightweight composite structures in the forewings of beetles,” Compos. Struct., vol. 79, pp. 331–337, 2017. DOI:10.1016/j.compstruct.2006.01.010.
  • J. X. Chen, Z. S. Guo, S. C. Du, and Y. Xu, “Heat transfer characteristics of straw-core paper honeycomb plates (beetle elytron plates) I: experimental study on horizontal placement with hot-above and cold-below,” Appl. Therm. Eng, (Under Review).
  • Z. S. Guo, et al., “Heat transfer characteristics of straw-core paper honeycomb plates (beetle elytron plates) II: calculation and analysis of radiative heat transfer on horizontal placement with hot-above and cold-below,” Appl. Therm. Eng, (Under Review).
  • X. M. Zhang, Z. P. Ren, and F. M. Mei, Heat Transfer, fifth ed. Beijing: China Architecture & Building Press, 2007.
  • S. M. Yang and W. Q. Tao, Heat Transfer, fourth ed. Beijing: Higher Education Press, 2006.
  • K. Daryabeigi, “Heat transfer in adhesively bonded honeycomb core panels,” J. Thermophys. Heat Transfer., vol. 16, no. 2, pp. 217–221, 2002. DOI: 10.2514/2.6687.
  • Z. S. Guo, et al., “Relation between the geometric parameters and the composite heat transfer of paper honeycomb plates under cold-above/hot-below conditions and the corresponding influence mechanism,” J. Build. Eng, (Under Review).
  • W. M. Kays, M. Crawford, and B. Weigand, Convective Heat and Mass Transfer, Fourth ed. Boston: McGraw-Hill Higher Education, 2005.
  • S. H. Yin, T. Y. Wung, and K. Chen, “Natural convection in an air la`yer enclosed within rectangular cavities,” Int. J. Heat Mass Transfer, vol. 21, no. 3, pp. 307–315, 1978. DOI: 10.1016/0017-9310(78)90123-0.
  • X. H. Yang, C. F. Chen, B. Yang, C. B. Ye, and S. M. Luo, “Performance comparison between glazed hollow bead and closed-cell expanded perlite,” New Build. Mater., vol. 4, pp. 42–44, 2009.
  • R. H. Tan, “Research on thermal characteristics of main crop straw in northwest china,” PhD thesis, Northwest A&F University, Xianyang, Shanxi, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.